Warianty tytułu
Potential of using bacteriophages and nanomaterials for eradicating bacterial diseases in animals
Języki publikacji
Abstrakty
The appearance of new and the recurrence of old bacterial infections in animals, coupled with a simultaneous epidemic increase in the number of multidrug-resistant strains and accompanying diagnostic problems, causes a growing interest in alternative strategies for prevention and treatment of resultant diseases. Technologies based on therapeutic bacteriophages or various kinds of nanomaterials are very promising and increasingly applied in eradicating harmful enzootic and zoonotic pathogens. A new development in these endeavours may be the combined use of phages (particularly M13, MS2, λ and T-even phages) and nanoparticles for a synergistic effect. Mutual interactions between the two factors depend not only on the type and characteristics of a given nanomaterial and on the morphological type of the phage, but also on their quantity, ambient temperature, and time of exposure. Interactions between nanoparticles and bacteriophages are due to electrostatic effects used in creating hybrid phage-nanomaterial constructs that find application in eradicating bacterial pathogens, including drug-resistant and biofilming ones, as well as in directed drug delivery. One of the methods for creating useful phage-nanomaterial complexes is immobilisation by encapsulation. The entrapment of phages in a liposome structure promotes their replication and activity thanks to the small size and positive electric charge. Liposomal encapsulation protected them from the strongly acidic environment in the stomach, significantly prolonged the possibility of their storage, as well as increased their stability and durability in drinking water and feed without changing the sensory properties of water and feed. Phage-nanomaterial complexes can also be a very precise diagnostic tool for detecting bacterial pathogens in the environment, considerably increasing the sensitivity, specificity and rapidity of detection tests.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
s.375-381,rys.,bibliogr.
Twórcy
autor
- Katedra Mikrobiologii i Biotechnologii, Wydział Biotechnologii i Hodowli Zwierząt, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, al. Piastów 45, 70-311 Szczecin
autor
- Katedra Mikrobiologii i Biotechnologii, Wydział Biotechnologii i Hodowli Zwierząt, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, al. Piastów 45, 70-311 Szczecin
autor
- Building Materials and Construction Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin
Bibliografia
- 1. Abedon S. T., García P., Mullany P., Aminov R.: Editorial: phage therapy: past, present and future. Front. Microbiol. 2017, 8, 981.
- 2. Adamu A. K., Sabo M. A., Abas F.: Chitosan nanoparticles as carriers for the delivery of ΦKAZ14 bacteriophage for oral biological control of colibacillosis in chickens. Molecules 2016, 21, 256.
- 3. Ashley C. E., Carnes E. C., Phillips G. K., Durfee P. N., Buley M. D., Lino C. A., Padilla D. P., Phillips B., Carter M. B., Willman C. L., Brinker C. J., Caldeira J., Chackerian B., Wharton W., Peabody D. S.: Cell-specific delivery of diverse cargos by bacteriophage MS2 virus-like particles. ACS Nano. 2011, 5, 5729-5745.
- 4. Augustyniak A., Cendrowski K., Nawrotek P., Barylak M., Mijowska E.: Investigating the interaction between Streptomyces sp. and titania/silica nanospheres. Water Air Soil Pollut. 2016, 227, 230.
- 5. Augustyniak A., Grygorcewicz B., Nawrotek P.: Isolation of multidrug resistant coliforms and their bacteriophages from swine slurry. Turk. J. Vet. Anim. Sci. 2018, 42, 319-325.
- 6. Bai D.-P., Lin X.-Y., Huang Y.-F., Zhang X.-F.: Theranostics aspects of various nanoparticles in veterinary medicine. Int. J. Mol. Sci. 2018, 19, 3299.
- 7. Bogdan J., Pławińska-Czarnak J., Zarzyńska J.: Nanomateriały w medycynie – właściwości ditlenku tytanu i perspektywy jego wykorzystania w terapii przeciwnowotworowej. Med. Weter. 2015, 71, 18-23.
- 8. Bonnain C., Breitbart M., Buck K. N.: The ferrojan horse hypothesis: iron-virus interactions in the ocean. Front. Mar. Sci. 2016, 3, 82.
- 9. Cendrowski K.: Titania/mesoporous silica nanotubes with efficient photocatalytic properties. Pol. J. Chem. Technol. 2018, 20, 103-108.
- 10. Cernei N., Dostalova S., Heger Z., Kopel P., Zitka O., Adam V., Kizek R.: Paramagnetic particles for immobilization of bacteriophage λ. J. Metallomics Nanotechnol. 2015, 1, 57-61.
- 11. Chan B. K., Abedon S. T., Loc-Carrillo C.: Phage cocktails and the future of phage therapy. Future Microbiol. 2013, 8, 769-783.
- 12. Chen B. A., Dai Y. Y., Wang X. M., Zhang R. Y., Xu W. L., Shen H. L., Gao F., Sun Q., Deng X. J., Ding J. H., Gao C., Sun Y. Y., Cheng J., Wang J., Zhao G., Chen N. N.: Synergistic effect of the combination of nanoparticulate Fe3 O4 and Au with daunomycin on K562/A02 cells. Int. J. Nanomedicine 2008, 3, 343-350.
- 13. Colom J., Cano-Sarabia M., Otero J., Cortés P., Maspoch D., Llagostera M.: Liposome-encapsulated bacteriophages for enhanced oral phage therapy against Salmonella spp. Appl. Environ. Microbiol. 2015, 81, 4841-4849.
- 14. Courtney C. M., Goodman S. M., Nagy T. A., Levy M., Bhusal P., Madinger N. E., Detweiler C. S., Nagpal P., Chatterjee A.: Potentiating antibiotics in drug-resistant clinical isolates via stimuli-activated superoxide generation. Sci. Adv. 2017, 3:e1701776.
- 15. Evans C. M., Cass L. C., Knowles K. E., Tice D. B., Chang R. P. H., Weiss E. A.: Review of the synthesis and properties of colloidal quantum dots: the evolving role of coordinating surface ligands. J. Coord. Chem. 2012, 65, 2391-2414.
- 16. Głód D., Adamczak M., Bednarski W.: Wybrane aspekty zastosowania nanotechnologii w produkcji żywności. Zywn. Nauk. Technol. Ja. 2014, 5, 36-52.
- 17. Gokulan K., Bekele A. Z., Drake K. L., Khare S.: Responses of intestinal virome to silver nanoparticles: safety assessment by classical virology, whole-genome sequencing and bioinformatics approaches. Int. J. Nanomedicine 2018, 13, 2857-2867.
- 18. González-Menéndez E., Fernández L., Gutiérrez D., Pando D., Martínez B., Rodríguez A., García P.: Strategies to encapsulate the Staphylococcus aureus bacteriophage phiIPLA-RODI. Viruses 2018, 10, 495.
- 19. Grygorcewicz B., Grudziński M., Wasak A., Augustyniak A., Pietruszka A., Nawrotek P.: Bacteriophage-mediated reduction of Salmonella Enteritidis in swine slurry. Appl. Soil Ecol. 2017, 119, 179-182.
- 20. Gryko R., Parasion S., Mizak L.: Bakteriofagi i fagoterapia. Med. Weter. 2010, 66, 232-235.
- 21. Guo J., Gao S. H., Lu J., Bond P. L., Verstraete W., Yuan Z.: Copper oxide nanoparticles induce lysogenic bacteriophage and metal-resistance genes in Pseudomonas aeruginosa PAO1. ACS Appl. Mater. Interfaces 2017, 9, 22298- -22307.
- 22. Harada L. K., Silva E. C., Campos W. F., Del Fiol F. S., Vila M., Dąbrowska K., Krylov V. N., Balcão V. M.: Biotechnological applications of bacteriophages: State of the art. Microbiol. Res. 2018, 212-213, 38-58.
- 23. Henein A.: What are the limitations on the wider therapeutic use of phage? Bacteriophage 2013, 3, e24872.
- 24. Jou W. M., Haegeman G., Ysebaert M., Fiers W.: Nucleotide sequence of the gene coding for the bacteriophage MS2 coat protein. Nature 1972, 237, 82-88.
- 25. Karimi M., Mirshekari H., Moosavi Basri S. M., Bahrami S., Moghoofei M., Hamblin M. R.: Bacteriophages and phage-inspired nanocarriers for targeted delivery of therapeutic cargos. Adv. Drug Deliv. Rev. 2016, 106, 45-62.
- 26. Kasprzykowska U., Sobieszczańska B. M.: Plastyczność bakteryjnych genomów – międzykomórkowy transfer informacji genetycznej. Post. Mikrobiol. 2014, 53, 165-171.
- 27. Liga M. V., Bryant E. L., Colvin V. L., Li Q.: Virus inactivation by silver doped titanium dioxide nanoparticles for drinking water treatment. Water Res. 2011, 45, 535-544.
- 28. Ling-Li L., Pingfeng Y., Xifan W., Sheng-Song Y., Jacques M., Han-Qing Y., Alvarez P. J. J.: Enhanced biofilm penetration for microbial control by polyvalent phages conjugated with magnetic colloidal nanoparticle clusters (CNCs). Environ. Sci. Nano 2017, 4, 1817-1826.
- 29. Łubowska N., Piechowicz L.: Biofilm Staphylococcus aureus i rola bakteriofagów w jego eradykacji. Postepy Hig. Med. Dosw. 2018, 72, 101-107.
- 30. Malik D. J., Sokolov I. J., Vinner G. K., Mancuso F., Cinquerrui S., Vladisavljevic G. T., Clokie M. R. J., Garton N. J., Stapley A. G. F., Kirpichnikova A.: Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Adv. Colloid Interface Sci. 2017, 249, 100-133.
- 31. Małaczewska J.: Cytotoksyczność nanocząsteczek srebra. Med. Weter. 2010, 66, 833-838.
- 32. Meissner J. M., Toporkiewicz M., Matusewicz L., Machnicka B.: Liposomy jako niewirusowe systemy dostarczania leków genetycznych. Postepy Hig. Med. Dosw. 2016, 70, 200-209.
- 33. Międzybrodzki R., Kłak M., Jończyk-Matysiak E., Bubak B., Wójcik A., Kaszowska M., Weber-Dąbrowska B., Łobocka M., Górski A.: Means to facilitate the overcoming of gastric juice barrier by a therapeutic staphylococcal bacteriophage A5/80. Front. Microbiol. 2017, 8, 467.
- 34. Mijowska E., Cendrowski K., Barylak M., Konicki W.: Sandwich-like mesoporous silica flakes for anticancer drug transport – synthesis, characterization and kinetics release study. Colloids Surf. B Biointerfaces 2015, 136, 119-125.
- 35. Moghtader F., Tomak A., Zareie H. M., Piskin E.: Bacterial detection using bacteriophages and gold nanorods by following time-dependent changes in Raman spectral signals. Artif. Cells Nanomed. Biotechnol. 2018, 46, 122-130.
- 36. Nawrotek P., Augustyniak A.: Nanotechnology in microbiology – selected aspects. Post. Mikrobiol. 2015, 54, 275-282.
- 37. Nogueira F., Karumidze N., Kusradze I., Goderdzishvili M., Teixeira P., Gouveia I. C.: Immobilization of bacteriophage in wound-dressing nanostructure. Nanomedicine 2017, 13, 2475-2484.
- 38. Rodríguez-Rubio L., Gutiérrez D., Donovan D. M., Martínez B., Rodríguez A., García P.: Phage lytic proteins: biotechnological applications beyond clinical antimicrobials. Crit. Rev. Biotechnol. 2016, 36, 542-552.
- 39. Scibilia S., Lentini G., Fazio E., Franco D., Neri F., Mezzasalma A. M., Guglielmino S. P. P.: Self-assembly of silver nanoparticles and bacteriophage. Sens. Bio-Sensing Res. 2016, 7, 146-152.
- 40. Sękowski S., Miłowska K., Gabryelak T.: Dendrymery w naukach biomedycznych i nanotechnologii. Postepy Hig. Med. Dosw. 2008, 62, 725-733.
- 41. Sunderland K. S., Yang M., Mao C.: Phage-enabled nanomedicine: from probes to therapeutics in precision medicine. Angew. Chem. Int. Ed. 2017, 56, 1964-1992.
- 42. Szermer-Olearnik B., Boratyński J.: Bakteriofagi – nanocząstki o szerokich zastosowaniach. Chemik 2014, 68, 761-765.
- 43. Thacker P. A.: Alternatives to antibiotics as growth promoters for use in swine production: a review. J. Anim. Sci. Biotechnol. 2013, 4, 35.
- 44. Vajtai R. (ed.): Springer Handbook of Nanomaterials. Springer-Verlag Berlin Heidelberg 2013.
- 45. Wernicki A., Puchalski A., Urban-Chmiel R., Dec M., Stęgierska D., Dudzic A., Wójcik A.: Antimicrobial properties of gold, silver, copper and platinum nanoparticles against selected microorganisms isolated from cases of mastitis in cattle. Med. Weter. 2014, 70, 564-567.
- 46. Westfall C., Flores-Mireles A. L., Robinson J. I., Lynch A. J. L., Hultgren S., Henderson J. P., Levin P. A.: The widely used antimicrobial triclosan induces high levels of antibiotic tolerance in vitro and reduces antibiotic efficacy up to 100-fold in vivo. Antimicrob. Agents Chemother. 2019, 63, e02312-18.
- 47. You J., Zhang Y., Hu Z.: Bacteria and bacteriophage inactivation by silver and zinc oxide nanoparticles. Colloids Surf. B Biointerfaces 2011, 85, 161-167.
- 48. Zabielska K., Lechowski R.: Nowe kierunki w leczeniu przeciwnowotworowym. Wykorzystanie nanotechnologii. Med. Weter. 2011, 67, 34-37.
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.agro-f1640ee4-d3ed-4b1e-8336-e669e8a23dc0