Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 32 | 2 |
Tytuł artykułu

Water relations and chlorophyll fluorescence responses of two leguminous trees from the Caatinga to different watering regimes

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Leguminous species, Piptadenia moniliformes (Benth.) and Trischidium molle (Benth.) H. E. Ireland, both prevalent in the Caatinga vegetation, were submitted to varying watering regimes under greenhouse conditions. In experiment I, 60-day-old P. moniliformes plants were maintained under suspended irrigation for 12 days. Assessment on day 12 of drought revealed that leaf relative water content decreased to 40% and stomatal conductance and transpiration were also strongly diminished. Apparent electron transport rate (ETR) and photochemical quenching (qP) values were reduced by water deficit treatment compared to controls, while non-photochemical quenching (NPQ) increased; however, the basal values were recovered in moisturized plants when analyzed after 48 h of rewatering. In experiment II, T. molle plants were watered once (1 ×), 3 (3 ×) or 5 times (5 ×) per week, up to day 65 after emergence. Chlorophyll a, chlorophyll b and carotenoid contents were reduced in the 3 × and 5 × watering treatments. Photosystem II maximum efficiency (Fv'/Fm'), ETR and qP values strongly decreased when drainage frequency and NPQ values were increased. Observation verified that chlorophyll fluorescence is a suitable tool for evaluating the developmental characteristics of the arboreal leguminous species studied. Analysis of the data obtained suggest that plant tolerance to the dry climate conditions of the Caatinga ecosystem is directly associated with fast physiological adaptation to water deficit, by accumulating biomass in the root system in detriment to the shoots. The data presented contribute to further understanding the developmental and physiological mechanisms that enable plant adaptation to dry climates and, particularly, to the unique dry environmental conditions of the Caatinga region.
Wydawca
-
Rocznik
Tom
32
Numer
2
Opis fizyczny
p.235-244,fig.,ref.
Twórcy
autor
  • Departamento de Botanica, Universidade Federal de Pernambuco, 50670-901 Recife, Pernambuco, Brazil
autor
  • Departamento de Botanica, Universidade Federal de Pernambuco, 50670-901 Recife, Pernambuco, Brazil
  • Departamento de Botanica, Universidade Federal de Pernambuco, 50670-901 Recife, Pernambuco, Brazil
autor
  • Departamento de Botanica, Universidade Federal de Pernambuco, 50670-901 Recife, Pernambuco, Brazil
Bibliografia
  • Baker NR, Rosenqvist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607–1621. doi:10.1093/jxb/erh196
  • Barbosa DCA, Barbosa MCA, Lima LCM (2003) Fenologia de espécies lenhosas da Caatinga. In: Leal IR, Tabarelli M, Silva JMC (eds) Ecologia e Conservação da Caatinga. Universitária da UFPE, Recife, pp 657–693
  • Barrs HD, Weatherley PE (1962) A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci 15:413–428
  • Blaikie SJ, Chacko EK (1998) Sap flow, leaf exchange and chlorophyll fluorescence of container-grown cashew (Anacardium occidentale L.) trees subjected to repeated cycles of soil drying. Aust J Exp Agric 38:305–311. doi:10.1071/EA97124
  • Björkman O, Powles SB (1984) Inhibition of photosynthetic reactions under water stress: interaction with light level. Planta 161:490–504. doi:10.1007/BF00407081
  • Bolhar-Nordenkampf HR, Long SP, Baker NR, Öquist G, Schreiber U, Lechner EG (1989) Chlorophyll fluorescence as probe of the photosynthetic competence of leaves in the field: a review of current instrument. Funct Ecol 3:497–514
  • Cabral EL, Barbosa DCA, Simabukuro EA (2004) Growth of young plants of Tabebuia aurea (Manso) Benth. & Hook. f. ex S. Moore under water stress. Acta Bot Bras 18:241–251. doi: 10.1590/S0102-33062004000200004
  • Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP, Osório ML, Carvalho I, Faria T, Pinheiro C (2002) How plants cope with water stress in the field. Photosynthesis and growth. Ann Bot 89:907–916. doi:10.1093/aob/mcf105
  • Cornic G, Massacci A (1996) Leaf photosynthesis under drought stress. In: Baker NR (ed) Photosynthesis and the environment. series advances in photosynthesis, vol 5. Kluwer Academic Publishers, Dordrecht, pp 347–366
  • Dias BFS (1992) Cerrados: uma caracterização. In: Dias BFS (ed) Alternativas de Desenvolvimento dos Cerrados: Manejo e Conservação dos Recursos Naturais Renováveis. Funatura, Brasília
  • Drew MC, Lynch JM (1980) Soil anaerobiosis, microorganisms and root function. Annu Rev Phytopathol 18:37–66
  • Edwards GE, Baker NR (1993) Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis? Photosynth Res 37:89–102. doi:10.1007/BF02187468
  • Elsheery NI, Cao KF (2008) Gas exchange, chlorophyll fluorescence, and osmotic adjustment in two mango cultivars under drought stress. Acta Physiol Plant 30:769–777. doi:10.1007/s11738-008-0179-x
  • Gil PR (ed) (2002) Wilderness—earth’s last wild places. CEMEX, Mexico
  • Gómez-Aparicio L, Gómez JM, Zamora R, Boettinger JL (2004) Canopy vs. soil effects of shrubs facilitating tree seedlings in Mediterranean montane ecosystems. J Veg Sci 16:191–198. doi: 10.1111/j.1654-1103.2005.tb02355.x
  • Ireland HE (2007) Taxonomic changes in the South American genus Bocoa (Leguminosae-Swartzieae): reinstatement of the name Trischidium, and a synopsis of both genera. Kew Bull 62:333–350
  • Kramer PJ, Boyer JS (1995) Water relations of plants and soils. Academic, San Diego
  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349. doi:199100104514022
  • Kyparissis A, Petropoulou Y, Manetas Y (1995) Summer survival of leaves in a soft-leaved shrub (Phlomis fruticosa L., Labiatae) under Mediterranean field conditions: avoidance of photoinhibitory damage through decreased chlorophyll contents. J Exp Bot 46:1825–1831. doi:10.1093/jxb/46.12.1825
  • Laffray D, Louguet P (1990) Stomatal responses and drought resistance. Bull Soc Bot Fr l37:47–60
  • Lawlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 25:275–294. doi:10.1046/j.0016-8025.2001.00814.x
  • Lichtenthaler HK, Wellburn AR (1983) Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 603:591
  • Machado IC, Lopes AV, Sazima M (2006) Plant sexual systems and a review of the breeding system studies in the Caatinga, a brazilian tropical dry forest. Ann Bot 97:277–287. doi:10.1093/aob/mcj029
  • Mansur RJCN, Barbosa DCA (2000) Physiological behavior in young plants of four trees species of Caatinga submitted the two cycles of water stress. Phyton 68:97–106
  • Massacci A, Jones HG (1990) Use of simultaneous analysis of gas exchange and chlorophyll fluorescence quenching for analyzing the effects of water stress on photosynthesis in apple leaves. Trees 4:1–8. doi:10.1007/BF00226233
  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence: a practical guide. J Exp Bot 51:659–668. doi:10.1093/jexbot/51.345.659
  • McCully M (1995) How do real roots work? Some new views of root structure. Plant Physiol 109:1–6. doi:10.1104/pp.109.1.1
  • MMA Ministério do Meio Ambiente (2002) Avaliação e ações prioritárias para a conservação da biodiversidade da Caatinga. Universidade Federal de Pernambuco/Fundação de Apoio ao Desenvolvimento/Conservation International do Brasil, Fundação Biodiversitas, EMBRAPA/Semi-Árido. MMA/SBF, Brasília
  • Nimer E (1989) Climatologia do Brasil. IBGE-SUPREN, Rio de Janeiro
  • Queiroz LP (2007) Leguminosas da Caatinga. Universidade Estadual de Feira de Santana, Feira de Santana
  • Queiroz CGS, Garcia QS, Lemos-Filho JP (2002) Photosynthetic activity and membrane lipid peroxidation of aroeira-do-sertão plants under water stress and after rehydration. Braz J Plant Physiol 14:59–63. doi:10.1590/S1677-04202002000100008
  • Queiroz LP, França F, Giulietti AM, Melo E, Gonçalves CN, Funch LS, Harley RM, Funch RR, Silva TS (2005) Caatinga. In: Juncá FA, Funch L, Rocha W (eds) Biodiversidade e Conservação da Chapada Diamantina. Ministério do Meio Ambiente, Brasília
  • Ribeiro RV, Machado EC, Oliveira RF, Pimentel C (2003) High temperature effects on the response of photosynthesis to light in sweet orange plants infected with Xylella fastidiosa. Braz J Plant Physiol 15:89–97. doi:10.1590/S1677-04202003000200004
  • Ribeiro RV, Santos MG, Machado EC, Oliveira RF (2008) Photochemical heat-shock response in common bean leaves as affected by previous water deficit. Russ J Plant Physiol 55:350–358. doi:10.1134/S1021443708030102
  • Sampaio EVSB (1995) Overview of the Brazilian Caatinga. In: Bullo SH, Mooney HA, Medina E (eds) Seasonally dry tropical forest. University Press, Cambridge, pp 35–63
  • Santos MG, Ribeiro RV, Oliveira RF, Pimentel C (2004) Gas exchange and yield response to foliar phosphorus application in Phaseolus vulgaris L. under drought. Braz J Plant Physiol 16:171–179. doi:10.1590/S1677-04202004000300007
  • Santos MG, Ribeiro RV, Oliveira RF, Machado EC, Pimentel C (2006) The role of inorganic phosphate on photosynthesis recovery of common bean after a mild water deficit. Plant Sci 170:659–664. doi:10.1016/j.plantsci.2005.10.020
  • Santos MG, Ribeiro RV, Machado EC, Pimentel C (2009) Photosynthetic and leaf water potential responses of five common bean genotypes to mild water deficit. Biol Plant 53:229–236. doi: 10.1007/s10535-009-0044-9
  • Schreiber U, Bilge W, Neubauer C (1994) Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In: Schulze ED, Caldwell MM (eds) Ecophysiology of photosynthesis. Ecological studies. Springer, Berlin, pp 49–70
  • Schulze ED (1986) Carbon dioxide and water vapor exchange in response to drought in the atmosphere and in the soil. Annu Rev Plant Physiol 37:247–274
  • Silva RA, Santos AMM, Tabarelli M (2003a) Riqueza e diversidade de plantas lenhosas em cinco unidades de paisagens da caatinga. In: Leal IR, Tabarelli M, Silva JMC (eds) Ecologia e Conservação da Caatinga. Universitária da UFPE, Recife, p 337
  • Silva EC, Nogueira RJMC, Azevedo-Neto AD, Santos VF (2003b) Estomatal behavior and leaf water potential in three wood species cultivated under water stress. Acta Bot Bras 17:231–246. doi:10.1590/S0102-33062003000200006
  • Silva EC, Nogueira RJMC, Araújo FP, Melo NF, Azevedo-Neto AD (2008) Physiological responses to salt stress in young umbu plants. Environ Exp Bot 63:147–157. doi:10.1016/j.envexpbot.2007.11.010
  • Souza RP, Machado EC, Silva JAB, Lagoa AMMA, Silveira JAG (2004) Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environ Exp Bot 51:45–56. doi:10.1016/S0098-8472(03)00059-5
  • Subbarao GV, Johansen AC, Slinkard RC, Rao N, Saxena NP, Chauhan YS (1995) Strategies for improving drought resistance in grain legumes. CRC Crit Rev Plant Sci 14:469–523
  • Tang AC, Kawamitsu Y, Kanechi M, Boyer JS (2002) Photosynthetic oxygen evolution at low water potential in leaf discs lacking an epidermis. Ann Bot 89:861–870. doi:10.1093/aob/mcf081
  • van Kooten O, Snel JFH (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photos Res 25:147–150. doi:10.1007/BF00033156
  • Yang J, Kong Q, Xiang C (2009) Effects of low night temperature on pigments, chl a fluorescence and energy allocation in two bitter gourd (Momordica charantia L.) genotypes. Acta Physiol Plant 31:285–293. doi:10.1007/s11738-008-0231-x
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-f1479205-9f3b-4121-b331-633bf434bf78
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.