Czasopismo
Tytuł artykułu
Warianty tytułu
Mechanisms of maintenance of intestinal homeostasis by autochthonic microbiota and probiotics
Języki publikacji
Abstrakty
Intestinal microbes are taxonomically diverse and constitute an ecologically dynamic microbiom interactively performing various physiological and physiopathological processes. It has been proposed that normal intestinal microbiotas play a critical role in the host’s metabolic homeostasis and immune tolerance. The modulation of intestinal microbiota populations by prebiotics, probiotics, and synbiotics may be beneficial for the host’s health. Under certain conditions, the intestinal microbiota and the host’s homeostasis can be restored by introducing bacteria that co-mediate anti-inflammatory responses. Commensal microbes and probiotics exert their beneficial effect by at least three mechanisms. These include – the maintenance of the epithelial barrier function and the attenuation of changes in intestinal permeability through effects on tight junction, decreasing paracellular permeability, providing innate defense against pathogens, and enhancing the physical impediment of the mucous layer, – competitive exclusion by the application of probiotic bacteria stabilizing the indigenous microflora, – immunomodulatory capacity, affecting a variety of signaling pathways with modulation of proper immune, inflammatory and allergic responses. The epithelial gut barrier faces important challenges, since its function is to prevent pathogens and harmful elements of the gut lumen from penetrating into the internal environment. Competitive exclusion treatment can increase resistance to pathogen colonization and control intestinal disturbance. The dominance of symbiotic and probiotic bacteria among the gut microbiota favors a tolerogenic immune response. The release of secretory IgA stabilizes tight junctions between cells of the epithelial layer as well as hampers pathogens and symbionts invading deeper layers. The understanding of these vital processes may help to protect the host against infection, prevent chronic inflammation, and maintain mucosal integrity.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
s.611-615,bibliogr.
Twórcy
autor
- Zakład Mikrobiologii, Katedra Nauk Przedklinicznych, Wydział Medycyny Weterynaryjnej, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, ul.Ciszewskiego 8, 02-786 Warszawa
autor
- Zakład Mikrobiologii, Katedra Nauk Przedklinicznych, Wydział Medycyny Weterynaryjnej, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, ul.Ciszewskiego 8, 02-786 Warszawa
autor
- Zakład Mikrobiologii, Katedra Nauk Przedklinicznych, Wydział Medycyny Weterynaryjnej, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, ul.Ciszewskiego 8, 02-786 Warszawa
autor
- Zakład Mikrobiologii, Katedra Nauk Przedklinicznych, Wydział Medycyny Weterynaryjnej, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, ul.Ciszewskiego 8, 02-786 Warszawa
autor
- Zakład Mikrobiologii, Katedra Nauk Przedklinicznych, Wydział Medycyny Weterynaryjnej, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, ul.Ciszewskiego 8, 02-786 Warszawa
autor
- Zakład Mikrobiologii, Katedra Nauk Przedklinicznych, Wydział Medycyny Weterynaryjnej, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, ul.Ciszewskiego 8, 02-786 Warszawa
Bibliografia
- Alakomi H. L., Skytta E., Saarela M., Mattila-Sandholm T., Latva-Kala K., Helander I. M.: Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl. Environ. Microbiol. 2000, 66, 2001-2005.
- Binek M.: Mikrobiom człowieka – zdrowie i choroba. Postępy Mikrobiol. 2012, 51, 27-36.
- Binek M.: Znaczenie jelitowych mikrobiontow w utrzymaniu ogólnej homeostazy gospodarza. Postępy Mikrobiol. 2015, 54, 207-216.
- Caballero-Franco C., Keller K., De Simone C., Chadee K.: The VSL#3 probiotic formula induces mucin gene expression and secretion in colonic epithelial cells. Am. J. Physiol. Gastrointest. Liver. Physiol. 2007, 292, G315-G322.
- Calcinaro F., Dionisi S., Marinaro M., Candeloro P., Bonato V., Marzotti S., Corneli R. B., Ferretti E., Gulino A., Grasso F., De Simone C., Di Mario U., Falorni A., Boirivant M., Dotta F.: Oral probiotic administration induces interleukin-10 production and prevents spontaneous autoimmune diabetes in the non-obese diabetic mouse. Diabetologia 2005, 48, 1565-1575.
- Cario E., Gerken G., Podolsky D. K.: Toll-like receptor 2 controls mucosal inflammation by regulating epithelial barrier function. Gastroenterology 2007, 132, 1359-1374.
- Corr S. C., Gahan C. G., Hill C.: Impact of selected Lactobacillus and Bifidobacterium species on Listeria monocytogenes infection and the mucosal immune response. FEMS Immunol. Med. Microbiol. 2007, 50, 380-388.
- Christensen H. R., Frokiaer H., Pestka J. J.: Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. J. Immunol. 2002, 168, 171-178.
- Cisek A. A., Binek M.: Chicken intestinal microbiota function with a special emphasis on the role of probiotic bacteria. Pol. J. Vet. Sci. 2014, 17, 385-394.
- Duquesne S., Petit V., Peduzzi J., Rebuffat S.: Structural and functional diversity of microcins, gene-encoded antibacterial peptides from enterobacteria. J. Mol. Microbiol. Biotechnol. 2007, 13, 200-209.
- Eckburg P. B., Bik E. M., Bernstein C. N., Purdom E., Dethlefsen L., Sargent M., Gill S. R., Nelson K. E., Relman D. A.: Diversity of the human intestinal microbial flora. Science 2005, 308, 1635-1638.
- Fink L. N., Zeuthen L. H., Christensen H. R., Morandi B., Frokiaer H., Ferlazzo G.: Distinct gut-derived lactic acid bacteria elicit divergent dendritic cell-mediated NK cell responses. Int. Immunol. 2007, 19, 1319-1327.
- Galdeano C. M., Perdigon G.: The probiotic bacterium Lactobacillus casei induces activation of the gut mucosal immune system through innate immunity. Clin. Vaccine Immunol. 2006, 13, 219-226.
- Gaudier E., Michel C., Segain J. P., Cherbut C., Hoebler C.: The VSL# 3 probiotic mixture modifies microflora but does not heal chronic dextran-sodium sulfate-induced colitis or reinforce the mucus barrier in mice. J. Nutr. 2005, 135, 2753-2761.
- Gomez A., Ladire M., Marcille F., Fons M.: Trypsin mediates growth phase-dependent transcriptional regulation of genes involved in biosynthesis of ruminococcin A, a lantibiotic produced by a Ruminococcus gnavus strain from a human intestinal microbiota. J. Bacteriol. 2002, 84, 18-28.
- Groschwitz K. R., Hogan S. P.: Intestinal barrier function: molecular regulation and disease pathogenesis. J. Allergy Clin. Immunol. 2009, 124, 3-20.
- Guchte M. van de., Ehrlich S. D., Maguin E.: Production of growth-inhibiting factors by Lactobacillus delbrueckii. J. Appl. Microbiol. 2001, 91, 147-153.
- Hattori M., Taylor T. D.: The human intestinal microbiome: a new frontier of human biology. DNA Research 2009, 16, 1-12.
- Heczko U., Abe A., Finlay B. B.: Segmented filamentous bacteria prevent colonization of enteropathogenic Escherichia coli O103 in rabbits. J. Infect. Dis. 2000, 181, 1027-1033.
- Hooper L. V., Wong M. H., Thelin A., Hansson L., Falk P. G., Gordon J. I.: Molecular analysis of commensal host-microbial relationships in the intestine. Science 2001, 291, 881-884.
- Ivanov I. I., Frutos Rde L., Manel N., Yoshinaga K., Rifkin D. B., Sartor R. B., Finlay B. B., Littman D. R.: Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 2008, 4, 337-349.
- Johansson M. E., Phillipson M., Petersson J., Velcich A., Holm L., Hansson G. C.: The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl. Acad. Sci. USA 2008, 105, 15064-15069.
- Johnson-Henry K. C., Donato K. A., Shen-Tu G., Gordanpour M., Sherman P. M.: Lactobacillus rhamnosus strain GG prevents enterohemorrhagic Escherichia coli O157:H7-induced changes in epithelial barrier function. Infect. Immun. 2008, 76, 1340-1348.
- Johnson-Henry K. C., Hagen K. E., Gordonpour M., Tompkins T. A., Sherman P. M.: Surface-layer protein extracts from Lactobacillus helveticus inhibit enterohaemorrhagic Escherichia coli O157:H7 adhesion to epithelial cells. Cell. Microbiol. 2007, 9, 356-367.
- Kalabis J., Rosenberg I., Podolsky D. K.: Vangl1 protein acts as a downstream effector of intestinal trefoil factor (ITF)/TFF3 signaling and regulates wound healing of intestinal epithelium. J. Biol. Chem. 2006, 281, 6434-6441.
- Kim S. H., Yang S. J., Koo R. C., Bae W. K., Kim J. Y., Park J. H., Baek Y. J., Park Y. H.: Inhibitory activity of Bifidobacterium longum HY8001 against vero cytotoxin of Escherichia coli O157:H7. J. Food. Prot. 2001, 64, 1667-1673.
- Kizerwetter-Świda M., Binek M.: Protective effect of potentialy probiotic Lactobacillus strains on infection with pathogenic bacteria in chickens. Pol. J. Vet. Sci. 2009, 12, 15-20.
- Kizerwetter-Świda M., Binek M.: Salivaricin B gene-its localization and RFLP analysis in two potentially probiotic Lactobacillus salivarius. Bull. Vet. Ins. Pulawy 2010, 54, 513-516.
- LeBlanc J., Fliss I., Matar C.: Induction of humoral immune response following an Escherichia coli O157:H7 infection with an immunomodulatory peptidic fraction derived from Lactobacillus helveticus-fermented milk. Clin. Diagn. Lab. Immunol. 2004, 11, 1171-1181.
- Lutgendorff F., Akkermans L. M., Soderholm J. D.: The role of microbiota and probiotics in stress-induced gastrointestinal damage. Curr. Mol. Med. 2008, 8, 282-298.
- Mack D. R., Ahrne S., Hyde L., Wei S., Hollingsworth M. A.: Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut 2003, 52, 827-833.
- Macpherson A. J., Uhr T.: Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 2004, 303, 1662-1665.
- Martins F. S., Silva A. A., Vieira A. T., Barbosa F. H., Arantes R. M., Teixeira M. M., Nicoli J. R.: Comparative study of Bifidobacterium animalis, Escherichia coli, Lactobacillus casei and Saccharomyces boulardii probiotic properties. Arch. Microbiol. 2009, 191, 623-630.
- Mattar A. F., Teitelbaum D. H., Drongowski R. A., Yongyi F., Harmon C. M., Coran A. G.: Probiotics up-regulate MUC-2 mucin gene expression in a Caco-2 cell-culture model. Pediatr. Surg. Int. 2002, 18, 586-590.
- Mazmanian S. K., Liu C. H., Tzianabos A. O., Kasper D. L.: An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 2005, 122, 107-118.
- Medellin-Pena M. J., Griffiths M. W.: Effect of molecules secreted by Lactobacillus acidophilus strain La-5 on Escherichia coli O157:H7 colonization. Appl. Environ. Microbiol. 2009, 75, 1165-1172.
- Ogawa M., Shimizu K., Nomoto K., Tanaka R., Hamabata T., Yamasaki S., Takeda T., Takeda Y.: Inhibition of in vitro growth of Shiga toxin-producing Escherichia coli O157:H7 by probiotic Lactobacillus strains due to production of lactic acid. Int. J. Food Microbiol. 2001, 68, 135-140.
- Ohland K., MacNaughton W. K.: Probiotic bacteria and intestinal epithelial barrier function. Am. J. Physiol. Gastrointes. Liver Physiol. 2010, 298, G807-G819.
- Pedron T., Sansonetti P.: Commensals, bacterial pathogens and intestinal inflammation: an intriguing menage a trois. Cell Host Microbe 2008, 3, 344-347.
- Qiao H. P., Duffy L. C., Griffiths E., Dryja D., Leavens A., Rossman J., Rich G., Riepenhoff-Talty M., Locniskar M.: Immune responses in rhesus rotavirus-challenged balb/c mice treated with Bifidobacteria and prebiotic supplements. Pediatr. Res. 2002, 51, 750-755.
- Rea M. C., Clayton E., O’Connor P. M., Shanahan F., Kiely B., Ross R. P., Hill C.: Antimicrobial activity of lacticin 3147 against clinical Clostridium difficile strains. J. Med. Microbiol. 2007, 56, 940-946.
- Resta-Lenert S., Barrett K. E.: Probiotics and commensals reverse TNF-α-and IFN-γ-induced dysfunction in human intestinal epithelial cells. Gastroenterology 2006, 130, 731-746.
- Roller M., Rechkemmer G., Watzl B.: Prebiotic inulin enriched with oligofructose in combination with the probiotics Lactobacillus rhamnosus and Bifidobacterium lactis modulates intestinal immune functions in rats. J. Nutr. 2004, 134, 153-156.
- Sanz Y., Nadal I., Sanchez E.: Probiotics as drugs against human gastrointestinal infections. Recent Patents Anti-Infect Drug Disc. 2007, 2, 148-156.
- Schauber J., Svanholm C., Termen S., Inffland K., Menzel T., Scheppach W., Melcher R., Agerberth B., Luhrs G., Gudmundsson G. H.: Expression of the cathelicidin LL-37 is modulated by short chain fatty acids in colonocytes: relevance of signaling pathways. Gut 2003, 52, 735-741.
- Schlee M., Harder J., Koten B., Stange E. F., Wehkamp J., Fellermann K.: Probiotic lactobacilli and VSL#3 induce enterocyte beta-defensin 2. Clin. Exp. Immunol. 2008, 151, 528-535.
- Severson E. A., Parkos C. A.: Mechanisms of outside-in signaling at the tight junction by junctional adhesion molecule A. Ann. NY Acad. Sci. 2009, 1165, 10-18.
- Sherman P. M., Johnson-Henry K. C., Yeung H. P., Ngo P. S. C., Goulet J., Tompkins T. A.: Probiotics reduce enterohemorrhagic Escherichia coli O157:H7- and enteropathogenic E. coli O127:H6-induced changes in polarized T84 epithelial cell monolayers by reducing bacterial adhesion and cytoskeletal rearrangements. Infect. Immun. 2005, 73, 5183-5188.
- Shu Q., Gill H. S.: A dietary probiotic (Bifidobacterium lactis HN019) reduces the severity of Escherichia coli O157:H7 infection in mice. Med. Microbiol. Immunol. 2001, 189, 147-152.
- Stecher B., Hardt W. D.: The role of microbiota in infectious disease. Trends Microbiol. 2008, 16, 107-114.
- Suzuki K., Meek B., Doi Y., Muramatsu M., Chiba T., Honjo T., Fagarasan S.: Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc. Natl. Acad. Sci. USA 2004, 101, 1981-1986.
- Termen S., Tollin M., Rodriguez E., Sveinsdottir S. H., Johannesson B., Cederlund A., Sjovall J., Agerberth B., Gudmundsson G. H.: PU1 and bacterial metabolites regulate the human gene CAMP encoding antimicrobial peptide LL-37 in colon epithelial cells. Mol. Immunol. 2008, 45, 3947-3955.
- Umesaki Y., Okada Y., Matsumoto S., Imaoka A., Setoyama H.: Segmented filamentous bacteria are indigenous intestinal bacteria that activate intraepithelial lymphocytes and induce MHC class II molecules and fucosyl asialo GM1 glycolipids on the small intestinal epithelial cells in the ex-germ-free mouse. Microbiol. Immunol. 1995, 39, 555-562.
- Wehkamp J., Harder J., Wehkamp K., Meissner B. W., Schlee M., Enders C., Sonnenborn U., Nuding S., Bengmark S., Fellermann K., Schroder J. M., Stange E. F.: NF-κB- and AP-1-mediated induction of human beta defensin-2 in intestinal epithelial cells by Escherichia coli Nissle 1917: a novel effect of a probiotic bacterium. Infect. Immun. 2004, 72, 5750-5758.
- Wu X., Vallance B. A., Boyer L., Bergstrom K. S. B., Walker J., Madsen K., O’Kusky J. R., Buchan A. M., Jacobson K.: Saccharomyces boulardii ameliorates Citrobacter rodentium-induced colitis through actions on bacterial virulence factors. A. J. Physiol. Gastrointest. Liver Physiol. 2008, 294, G295-G306.
- Yan F., Cao H., Cover T. L., Whitehead R., Washington M. K., Polk D. B.: Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. Gastroenterology 2007, 132, 562-575.
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.agro-f145b30f-5458-44d6-a6e5-fa441df34782