Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
The objective of the study was to evaluate the effects of increasing dietary standardized ileal digestible (SID) lysine (Lys) level on the expression of jejunal amino acids (AAs) transporters and the microflora in the hindgut of weaned pigs. One hundred and twenty weanling pigs weighing 8.10 ± 0.48 kg were randomly assigned according to body weight and sex to 5 treatments with 6 replicates per treatment and 4 pigs per replicate. Pigs were fed diets with 0.98, 1.11, 1.23, 1.35 or 1.48% of SID Lys for 28 days. The mRNA expression of cationic amino acids transporter 1 (CAT1) in jejunum was higher in groups fed with 1.23, 1.35 and 1.48% SID Lys addition (P < 0.05). There was stated a linear increase in the mRNA expressions of CAT1, excitatory amino acids carrier 1 (EAAC1) and peptide transporter T1 (PEPT1) (linear, P < 0.05). In the caecum, the populations of bacteria and the content of butyric acid were significantly influenced (P < 0.05) by dietary SID Lys. In animals fed diet with 1.35% SID Lys a content of butyric acid was the highest (P < 0.05). Moreover, the populations of Lactobacillus and Bifidobacterium in caecum and colon increased (linear, P < 0.05; quadratic, P < 0.05) as dietary SID Lys level increased. The obtained results showed that dietary SID Lys level may influence AAs absorption and promote the hindgut health. The suggested supplementation of SID Lys to the weaned pigs’ diet is 1.35%.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.238-247,ref.
Twórcy
autor
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
autor
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
autor
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
autor
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
autor
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
autor
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
autor
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
autor
- Evonik Degussa (China) Co., Ltd. Health & Nutrition, Beijing, 100026, China
autor
- Evonik Industries AG Health & Nutrition, Hanau-Wolfgang, 63457, Germany
autor
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
Bibliografia
- AOAC International, 1995. Official Methods of Analysis of AOAC International. 16th Edition. Arlington, VA (USA)
- Apple J.K., Maxwell C.V., Brown D.C., Friesen K.G., Musser R.E., Johnson Z.B., Armstrong T.A., 2004. Effects of dietary lysine and energy density on performance and carcass characteristics of finishing pigs fed ractopamine. J. Anim. Sci. 82, 3277–3287, https://doi.org/10.2527/2004.82113277x
- Bergen W.G., Wu G.Y., 2009. Intestinal nitrogen recycling and utilization in health and disease. J. Nutr. 139, 821–825, https://doi.org/10.3945/jn.109.104497
- Blachier F., Lancha A.H. Jr., Boutry C., Tomé D., 2010. Alimentary proteins, amino acids and cholesterolemia. Amino Acids 38, 15–22, https://doi.org/10.1007/s00726-009-0239-6
- Bröer A., Wanger C.A., Lang F., Bröer S., 2000. The heterodimeric amino acid transporter 4F2hc/y+LAT2 mediates arginine efflux in exchange with glutamine. Biochem. J. 349, 787–795, https://doi.org/10.1042/bj3490787
- Bröer S., 2008. Amino acid transport across mammalian intestinal and renal epithelia. Physiol. Rev. 88, 249–286, https://doi.org/10.1152/physrev.00018.2006
- Cameron N.D., McCullough E., Troup K., Penman J.C., 2003. Serum urea concentration as a predictor of dietary lysine requirement in selected lines of pigs. J. Anim. Sci. 81, 91–100, https://doi.org/10.2527/2003.81191x
- Chen H., Mao X.B., He J., Yu B., Huang Z., Yu J., Zheng P., Chen D., 2013. Dietary fibre affects intestinal mucosal barrier function and regulates intestinal bacteria in weaning piglets. Br. J. Nutr. 110, 1837–1848, https://doi.org/10.1017/S0007114513001293
- Chen H., Pan Y., Wong E.A., Bloomquist J.R., Webb K.E. Jr, 2002. Molecular cloning and functional expression of a chicken intestinal peptide transporter (cPepT1) in Xenopus oocytes and Chinese hamster ovary cells. J. Nutr. 132, 387–393, https://doi.org/10.1093/jn/132.3.387
- Dai Z.-L., Wu G., Zhu W.Y., 2011. Amino acid metabolism in intestinal bacteria: links between gut ecology and host health. Front. Biosci. 16, 1768–1786, https://doi.org/10.2741/3820
- Diao H., Zheng P., Yu B., He J., Mao X.B., Yu J., Chen D.W., 2014. Effects of dietary supplementation with benzoic acid on intestinal morphological structure and microflora in weaned piglets. Livest. Sci. 167, 249–256, https://doi.org/10.1016/j.livsci.2014.05.029
- Duncan S.H., Belenguer A., Holtrop G., Johnstone A.M., Flint H.J., Lobley G.E., 2007. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl. Environ. Microbiol. 73, 1073–1078, https://doi.org/10.1128/AEM.02340-06
- Egert M., de Graaf A.A., Smidt H., de Vos W.M., Venema K., 2006. Beyond diversity: functional microbiomics of the human colon. Trends Microbiol. 14, 86–91. https://doi.org/10.1016/j.tim.2005.12.007
- Ferreira T.M., Leonel A.J., Melo M.A., Santos R.R.G., Cara D.C., Cardoso V.N., Correia M.I.T.D., Alvarez-Leite J.I., 2012. Oral supplementation of butyrate reduces mucositis and intestinal permeability associated with 5-fluorouracil administration. Lipids 47, 669–678, https://doi.org/10.1007/s11745-012-3680-3
- García-Villalobos H., Morales-Trejo A., Araiza-Piña B.A., Htoo J.K., Cervantes-Ramírez M., 2012. Effects of dietary protein and amino acid levels on the expression of selected cationic amino acid transporters and serum amino acid concentration in growing pigs. Arch. Anim. Nutr. 66, 257–270, https://doi.org/10.1080/1745039X.2012.697351
- Gatrell S.K., Berg L.E., Barnard J.T., Grimmett J.G., Barnes K.M., Blemings K.P., 2013. Tissue distribution of indices of lysine catabolism in growing swine. J. Anim. Sci. 91, 238–247, https://doi.org/10.2527/jas.2011-5070
- Gilbert E.R., Li H., Emmerson D.A., Webb K.E. Jr, Wong E.A., 2008. Dietary protein quality and feed restriction influence abundance of nutrient transporter mRNA in the small intestine of broiler chicks. J. Nutr. 138, 262–271, https://doi.org/10.1093/jn/138.2.262
- Han G.-Q., Xiang Z.-T., Yu B., Chen D.-W., Qi H.-W., Mao X.-B., Chen H., Mao Q., Huang Z.-Q., 2012. Effects of different starch sources on Bacillus spp. in intestinal tract and expression of intestinal development related genes of weanling piglets. Mol. Biol. Rep. 39, 1869–1876, https://doi.org/10.1007/s11033-011-0932-x
- Hu Y., Smith D.E., Ma K., Jappar D., Thomas W., Hillgren K.M., 2008. Targeted disruption of peptide transporter Pept1 gene in mice significantly reduces dipeptide absorption in intestine. Mol. Pharm. 5, 1122–1130, https://doi.org/10.1021/mp8001655
- Hyde R., Taylor P.M., Hundal H.S., 2003. Amino acid transporters: roles in amino acid sensing and signalling in animal cells. Biochem. J. 373, 1–18, https://doi.org/10.1042/bj20030405
- Jobgen W.S., Fried S.K., Fu W.J., Meininger C.J., Wu G., 2006. Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J. Nutr. Biochem. 17, 571–588, http://doi.org/10.1016/j.jnutbio.2005.12.001
- Kanai Y., Hediger M.A., 2003. The glutamate and neutral amino acid transporter family: physiological and pharmacological implications. Eur. J. Pharmacol. 479, 237–247, https://doi.org/10.1016/j.ejphar.2003.08.073
- Kim Y.W., Ingale S.L., Kim J.S., Kim K.H., Chae B.J., 2011. Effects of dietary lysine and energy levels on growth performance and apparent total tract digestibility of nutrients in weanling pigs. Asian-Australas. J. Anim. Sci. 24, 1256–1267, https://doi.org/10.5713/ajas.2011.11134
- Lai C., Yin J., Li D., Zhao L., Qiao S., Xing J., 2005. Conjugated linoleic acid attenuates the production and gene expression of proinflammatory cytokines in weaned pigs challenged with lipopolysaccharide. J Nutr. 135, 239–244, https://doi.org/10.1093/jn/135.2.239
- Laspiur J.P., Burton J.L., Weber P.S.D., Moore J., Kirkwood R.N., Trottier N.L., 2009. Dietary protein intake and stage of lactation differentially modulate amino acid transporter mRNA abundance in porcine mammary tissue. J. Nutr. 139, 1677–1684, https://doi.org/10.3945/jn.108.103549
- Leibach F.H., Ganapathy V., 1996. Peptide transporters in the intestine and the kidney. Annu. Rev. Nutr. 16, 99–119, https://doi.org/10.1146/annurev.nu.16.070196.000531
- Liao S.F., Wang T., Regmi N., 2015. Lysine nutrition in swine and the related monogastric animals: muscle protein biosynthesis and beyond. Springerplus. 4, 147, https://doi.org/10.1186/s40064-015-0927-5
- NRC (National Research Council), 2012. Nutrient Requirements of Swine. 11th Revised Edition. The National Academies Press. Washington, DC (USA), https://doi.org/10.17226/13298
- Pfaffl M.W., 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45, https://doi.org/10.1093/nar/29.9.e45
- Pieper R., Kröger S., Richter J.F. et al., 2012. Fermentable fiber ameliorates fermentable protein-induced changes in microbial ecology, but not the mucosal response, in the colon of piglets. J. Nutr, 142, 661–667, https://doi.org/10.3945/jn.111.156190
- Qin J., Li R., Raes J. et al., 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65, https://doi.org/10.1038/nature08821
- Regnault T.R., de Vrijer B., Battaglia F.C., 2002. Transport and metabolism of amino acids in placenta. Endocrine 19, 23–41, https://doi.org/10.1385/ENDO:19:1:23
- Ren J.-B., Zhao G.-Y., Li Y.-X., Meng Q.-X., 2007. Influence of dietary lysine level on whole-body protein turnover, plasma IGF-I, GH and insulin concentration in growing pigs. Livest. Sci. 110, 126–132, http://doi.org/10.1016/j.livsci.2006.10.009
- Scheppach W., 1994. Effects of short chain fatty acids on gut morphology and function. Gut 35, Suppl. 1, S35–38, https://doi.org/10.1136/gut.35.1_Suppl.S35
- Suenaga R., Tomonaga S., Yamane H., Kurauchi I., Tsuneyoshi Y., Sato H., Denbow D.M., Furuse M., 2008. Intracerebroventricular injection of L-arginine induces sedative and hypnotic effects under an acute stress in neonatal chicks. Amino Acids 35, 139–146, https://doi.org/10.1007/s00726-007-0610-4
- Suzuki T., Yoshida S., Hara H., 2008. Physiological concentrations of short-chain fatty acids immediately suppress colonic epithelial permeability. Br. J. Nutr. 100, 297–305, https://doi.org/10.1017/S0007114508888733
- van Beers-Schreurs H.M., Nabuurs M.J.A., Vellenga L., Kalsbeek-van der Valk H.J., Wensing T., Breukink H.J., 1998. Weaning and the weanling diet influence the villous height and crypt depth in the small intestine of pigs and alter the concentrations of short-chain fatty acids in the large intestine and blood. J. Nutr. 128, 947–953, https://doi.org/10.1093/jn/128.6.947
- Verrey F., Closs E.I., Wagner C.A., Palacin M., Endou H., Kanai Y., 2004. CATs and HATs: the SLC7 family of amino acid transporters. Pflügers Arch. 447, 532–542, https://doi.org/10.1007/s00424-003-1086-z
- Wang X.-Q., Zeng P.-L., Feng Y., .Zhang C.-M., Yang J.-P., Shu G., Jiang Q.-Y., 2012. Effects of dietary lysine levels on apparent nutrient digestibility and cationic amino acid transporter mRNA abundance in the small intestine of finishing pigs, Sus scrofa. Anim. Sci. J. 83, 148–155, https://doi.org/10.1111/j.1740-0929.2011.00941.x
- Wu G., 2013. Amino Acids: Biochemistry and Nutrition. CRC Press. Boca Raton, FL (USA)
- Yang Y., Kiarie E., Slominski B.A., Brûlé-Babel A., Nyachoti C.M., 2010. Amino acid and fiber digestibility, intestinal bacterial profile, and enzyme activity in growing pigs fed dried distillers grains with solubles-based diets. J. Anim. Sci. 88, 3304–3312, https://doi.org/10.2527/jas.2009-2318
- Yin F.G., Liu Y.L., Yin Y.L., Kong X.F., Huang R.L., Li T.J., Wu G.Y., Hou Y., 2009. Dietary supplementation with Astragalus polysaccharide enhances ileal digestibilities and serum concentrations of amino acids in early weaned piglets. Amino Acids 37, 263–270, https://doi.org/10.1007/s00726-008-0142-6
- Zhang C., Zhang M., Wang S. et al., 2010. Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. ISME. J. 4, 232–241, https://doi.org/10.1038/ismej.2009.112
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-eefe3899-88a2-4850-88ca-96b4d4c5b2c7