Warianty tytułu
Języki publikacji
Abstrakty
Bat specimens held in natural history museum collections can provide insights into the distribution of species. However, there are several important sources of spatial error associated with natural history specimens that may influence the analysis and mapping of bat species distributions. We analyzed the importance of geographic referencing and error correction in species distribution modeling (SDM) using occurrence records of hoary bats (Lasiurus cinereus). This species is known to migrate long distances and is a species of increasing concern due to fatalities documented at wind energy facilities in North America. We used 3,215 museum occurrence records collected from 1950–2000 for hoary bats in North America. We compared SDM performance using five approaches: generalized linear models, multivariate adaptive regression splines, boosted regression trees, random forest, and maximum entropy models. We evaluated results using three SDM performance metrics (AUC, sensitivity, and specificity) and two data sets: one comprised of the original occurrence data, and a second data set consisting of these same records after the locations were adjusted to correct for identifiable spatial errors. The increase in precision improved the mean estimated spatial error associated with hoary bat records from 5.11 km to 1.58 km, and this reduction in error resulted in a slight increase in all three SDM performance metrics. These results provide insights into the importance of geographic referencing and the value of correcting spatial errors in modeling the distribution of a wide-ranging bat species. We conclude that the considerable time and effort invested in carefully increasing the precision of the occurrence locations in this data set was not worth the marginal gains in improved SDM performance, and it seems likely that gains would be similar for other bat species that range across large areas of the continent, migrate, and are habitat generalists.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.159-169,fig.,ref.
Twórcy
autor
- Department of Integrative Biology, University of Colorado, Denver, CO, 80204, USA
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO 80526, USA
autor
- Department of Integrative Biology, University of Colorado, Denver, CO, 80204, USA
autor
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO 80526, USA
autor
- Department of Integrative Biology, University of Colorado, Denver, CO, 80204, USA
Bibliografia
- 1. M. E. Aiello-Lammens , R. A. Boria , A. Radosavljevic , B. Vilela , and R. P. Anderson . 2015. spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 38: 541–545. Google Scholar
- 2. E. B. Arnett , and E. F. Baerwald . 2013. Impacts of wind energy development on bats: implications for conservation. Pp. 435–456, in Bat evolution, ecology, and conservation ( R. A. Adams and S. C. Pedersen , eds.). Springer, New York, xvi + 547 pp. Google Scholar
- 3. P. R. Barnhart , and E. H. Gillam . 2014. The impact of sampling method on maximum entropy species distribution modeling for bats. Acta Chiropterologica, 16: 241–248. Google Scholar
- 4. L. Breiman 2001. Random forests. Machine Learning, 45: 5–32. Google Scholar
- 5. B. Clarke , E. Fokoue , and H. H. Zhang . 2009. Principles and theory for data mining and machine learning. Springer, New York, xv + 751 pp. Google Scholar
- 6. P. M. Cryan 2003. Seasonal distribution of migratory tree bats (Lasiurus and Lasionycteris) in North America. Journal of Mammalogy, 84: 579–593. Google Scholar
- 7. C. M. Dimiceli , M. L. Carroll , R. A. Sohlberg , C. Huang , M. C. Hansen , and J. R. G. Townsend . 2011. Annual global automated MODIS vegetation continuous fields (MOD44B) at 250 m spatial resolution for data years beginning day 65, 2000–2010. Collection 5 percent tree cover. University of Maryland, College Park, MD, USA. http://www.landcover.org/data/vcf/. Accessed 7 June, 2013. Google Scholar
- 8. C. F. Dormann , J. M McPherson , M. B. Araújo , R. Bivand , J. Bolliger , G. Carl , R. G. Davies , A. Hirzel , W. Jetz , W. D. Kissling , et al. 2007. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography, 30: 609–628. Google Scholar
- 9. J. Elith , C. H. Graham , R. P. Anderson , M. Dudík , S. Ferrier , A. Guisan , R. J. Hijmans , F. Huettmann , J. R. Leathwick , A. Lehmann , et al. 2006. Novel methods improve prediction of species distributions from occurrence data. Ecography, 29: 129–151. Google Scholar
- 10. J. Elith , J. R. Leathwick , and T. Hastie . 2008. A working guide to boosted regression trees. Journal of Animal Ecology, 77: 802–813. Google Scholar
- 11. T. H. Fleming , and P. Eby . 2003. Ecology of bat migration. Pp. 156–208, in Bat ecology ( T. H. Kunz and M. B. Fenton , eds.). University of Chicago Press, Chica go, IL, xix + 779. Google Scholar
- 12. J. Franklin 2009. Mapping species distributions: spatial inference and prediction. Cambridge University Press, Cambridge, UK, xviii + 320. Google Scholar
- 13. J. H. Friedman 1991. Multivariate adaptive regression splines. Annals of Statistics, 19: 1–67. Google Scholar
- 14. D. Gesch , M. Oimoen , S. Greenlee , C. Nelson , M. Steuck , and D. Tyler . 2002. The national elevation dataset. Photogrammetric Engineering & Remote Sensing, 68: 5–11. Google Scholar
- 15. C. H. Graham , J. Elith , R. J. Hijmans , A. Guisan , A. Townsend Peterson , and B. A. Loiselle . 2008. The influence of spatial errors in species occurrence data used in distribution models. Journal of Applied Ecology, 45: 239–247. Google Scholar
- 16. R. J. Hijmans , S. E. Cameron , J. L. Para , P. G. Jones , and A. Jarvis . 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25: 1965–1978. Google Scholar
- 17. A. Jiménez-Valverde , P. Acevedo , A. M. Barbosa , J. M. Lobo , and R. Real . 2013. Discrimination capacity in spe cies distribution models depends on the representativeness of the environmental domain. Global Ecology and Biogeography, 22: 508–516. Google Scholar
- 18. P. Legendre 1993. Spatial autocorrelation: trouble or new paradigm? Ecology, 74: 1659–1673. Google Scholar
- 19. N.T. Longford 2013. Statistical decision theory. Springer, New York, x + 124. Google Scholar
- 20. S. Milborrow 2015. Multivariate adaptive regression splines. Package ‘earth’ for R. CRAN Repository. Retrieved from http://www.milbo.users.sonic.net/earth on 5 January 2015. Google Scholar
- 21. J. T. Morisette , C. S. Jarnevich , T. R. Holcombe , C. B. Talbert , D. Ignazio , M. K. Talbert , C. Sailva , D. Koop , A. Swanson , and N. E. Young . 2013. VisTrails SAHM: visualization and workflow management for species habitat modeling. Ecography, 36: 129–135. Google Scholar
- 22. Naimi , B. A. K. Skidmore , T. A. Groen , and N. A. S. Hamm . 2011. Spatial autocorrelation in predictors reduces the impact of positional uncertainty in occurrence data on species distribution modeling. Journal of Biogeography, 38: 1497–1509. Google Scholar
- 23. B. Naimi , N. A. S. Hamm , T. A. Groen , A. K. Skidmore , and A. G. Toxopeus . 2013. Where is positional uncertainty a problem for species distribution modeling? Ecography, 36: 001–013. Google Scholar
- 24. T. Newbold 2010. Applications and limitations of museum data for conservation and ecology, with particular attention to species distribution models. Progress in Physical Geo graphy, 34: 3–22. Google Scholar
- 25. A. T Peterson , J. Soberon , R. G. Pearson , R. P. Anderson , E. Martinez-Meyer , M. Nakamura , and M. B. Araujo . 2011. Ecological niches and geographic distributions. Prince ton University Press, Princeton, x + 314 pp. Google Scholar
- 26. S. J. Phillips , R. P. Anderson , and R. E. Schapire . 2006. Maximumentropy modeling of species geographic distributions. Ecological Modelling, 190: 231–259. Google Scholar
- 27. S. J. Phillips , M. Dudik , C. H. Graham , A. Lehmann , J. Leathwick , and S. Ferrier . 2009. Sample selection bias and presence-only distribution models: implications for back ground and pseudo-absence data. Ecological Applications, 19: 181–197. Google Scholar
- 28. R Development Core Team. 2013. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at http://www.Rproject.org/. Google Scholar
- 29. M. L. Samuels , J. A. Witmer , and A. A. Schaffner . 2012. Statistics for the life sciences, 4th edition. Pearson Educa tion, Boston, xi + 654 pp. Google Scholar
- 30. K. A. Shump Jr. , and A. U. Shump . 1982. Lasiurus cinereus. Mammalian Species, 185: 1–5. Google Scholar
- 31. B. Tan , J. T. Morisette , R. E. Wolfe , F. Gao , G. A. Ederer , J. Nightingale , and J. A. Pedelty . 2011. An enhanced TIMESAT algorithm for estimating vegetation phenology metrics from MODIS data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4: 361–371. Google Scholar
- 32. M. S. Wisz , R. J. Hijmans , J. Li , A. T. Peterson , C. H. Graham , and A. Guisan . 2008. Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14: 763–773. Google Scholar
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-ec5a9063-91da-4684-a186-4613360d2bc1