Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
This study analyzes changes in gene expression and the biochemical and physiological properties of the antioxidant system in the leaves of two sugarcane cultivars under salt stress. In both salt-stressed cultivars, no alteration in the foliar nitrogen content was observed; however, there was a reduction in the phosphorus and potassium levels and an increase in the sodium and chloride concentrations. There was also a reduction in gas exchange on the third day under salt stress. Although the content of soluble sugars remained stable in both species, there was a decrease in free amino acids. However, only the RB872552 cultivar displayed a lower leaf protein content compared to the control. The salt stress resulted in higher superoxide dismutase and L-ascorbate peroxidase activities, but only for the RB92579 cultivar. On the other hand, both cultivars were able to maintain lower malondialdehyde contents than the control plants. The gene expression analysis revealed down-regulated expression levels, including the levels of those enzymes linked to higher activities under salt stress. Our results showed that gene induction and leaf antioxidative cycle enzyme activity do not occur at the same time. The variations in gene expression and physiological responses are also discussed.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.447-459,fig.,ref.
Twórcy
autor
- Laboratorio de Ecofisiologia Vegetal, Departamento de Botanica, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
autor
- Laboratorio de Genetica Molecular, Departamento de Genetica, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
autor
- Laboratorio de Ecofisiologia Vegetal, Departamento de Botanica, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
autor
- Laboratorio de Ecofisiologia Vegetal, Departamento de Botanica, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
autor
- Laboratorio de Genetica Molecular, Departamento de Genetica, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
autor
- Laboratorio de Genetica Molecular, Departamento de Genetica, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
autor
- Laboratorio de Genetica e Bioquimica, Empresa Brasileira de Pesquisa Agropecuaria (EMBRAPA-CNPAB), Seropedica, RJ, 23851-970, Brazil
autor
- Laboratorio de Ecofisiologia Vegetal, Departamento de Botanica, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
Bibliografia
- Abogadallah GM (2010) Antioxidative defense under salt stress. Plant Signal Behav 5:369–374.
- Aguiar Netto AO, Gomes CCS, Lins CCV, Barros AC, Campeche LFSM, Blanco FF (2007) Características químicas e salino-sodicidade dos solos do Perímetro Irrigado California, SE, Brasil. Cienc Rural 37:1640–1645.
- Akhtar S, Wahid A, Rasul E (2003) Emergence, growth and nutrient composition of sugarcane sprouts under NaCl salinity. Biol Plantarum 46:113–116. doi:10.1023/A:1022326604192.
- Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344. doi:10.1046/j.1365-3040.2001.00778.x.
- Azevedo Neto AD, Prisco JT, Enés-Filho J, Medeiros JVR, Gomes-Filho E (2005) Hydrogen peroxide pre-treatment induces salt-stress acclimation in maize plants. J Plant Physiol 162: 1114–1122. doi:10.1016/j.jplph.2005.01.007.
- Baiges I, Schäffner AR, Affenzeller MJ, Mas A (2002) Plant aquaporins. Physiol Plantarum 115:175–182. doi:10.1034/j.1399-3054.2002.1150201.x.
- Barrs HD, Weatherle PE (1962) A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci 15:413–428. doi:10.1071/BI9620413.
- Benzarti M, Rejeb KB, Debez A, Messedi D, Abdelly C (2012) Photosynthetic activity and leaf antioxidative responses of Atriplex portulacoides subjected to extreme salinity. Acta Physiol Plant 34:1679–1688. doi:10.1007/s11738-012-0963-5.
- Bradford MM (1976) Rapid and quantitative method for quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–252. doi:10.1016/0003-2697(76)90527-3.
- Cakmak I, Horst WJ (1991) Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol Plantarum 83:463–468. doi:10.1111/j.1399-3054.1991.tb00121.x.
- Cha-um S, Chuencharoen S, Mongkolsiriwatana C, Ashraf M,Kirdmanee C (2012) Screening sugarcane (Saccharum sp.) genotypes for salt tolerance using multivariate cluster analysis. Plant Cell Tissue Organ Cult 110:23–33. doi:10.1007/s11240-012-0126-9.
- Cramer GR, Quarrie SA (2002) Abscisic acid is correlated with the leaf growth inhibition of four genotypes of maize differing in their response to salinity. Funct Plant Biol 29:111–115. doi:10.1071/PP01131.
- Cramer GR, Alberico GJ, Schidt C (1994) Salt tolerance is not associated with the sodium accumulation of two maize hybrids. Aust J Plant Physiol 21:675–692. doi:10.1071/PP9940675.
- De Vries SC, Van de Ven GWJ, Van Ittersum MK, Giller KE (2010) Resource use efficiency and environmental performance of nine major biofuel crops, processed by first generation conversion techniques. Biomass Bioenergy 34:588–601. doi:10.1016/j.biombioe.2010.01.001.
- Debnath M, Pandey M, Bisen PS (2011) An omics approach to understand the plant abiotic stress. OMICS 15:739–762. doi:10.1089/omi 2010.0146.
- Dubois M, Gilles KA, Hamilton JK, Reders PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. doi:10.1021/ac60111a017.
- FAO (2008) Land and plant nutrition management service. Food and Agriculture Organization of the United Nations.
- Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875. doi:10.1105/tpc.105.033589.
- Giannopolitis CN, Ries SK (1977) Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol 59:309–314.
- Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930.
- Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. University of California, Berkeley.
- Hsiao TC, Xu LK (2000) Sensitivity of growth of roots versus leaves to water stress: biophysical analysis and relation to water transport. J Exp Bot 51:1595–1616.
- Hu L, Li H, Pang H, Fu J (2012) Responses of antioxidant gene, protein and enzymes to salinity stress in two genotypes of perennial ryegrass (Lolium perenne) differing in salt tolerance. J Plant Physiol 169:146–156. doi:10.1016/j.jplph.2011.08.020.
- Joseph B, Jini D (2010) Insight into the role of antioxidant enzymes for salt tolerance in plants. Int J Bot 6:456–464. doi:10.3923/ijb.2010.456.464.
- Katsuhara M, Otsuka T, Ezaki B (2005) Salt stress-induced lipid peroxidation is reduced by glutathione S-transferase, but this reduction of lipid peroxides is not enough for a recovery of root growth in Arabidopsis. Plant Sci 169:369–373. doi:10.1016/j.plantsci.2005.03.030.
- Kawasaki S et al (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13:889–905.
- Koca H, Bor M, Özdemir F, Türkan İ (2007) The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ Exp Bot 60:344–351. doi:10.1016/j.envexpbot.2006.12.005.
- Koyro HW (2006) Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Environ Exp Bot 56:136–146. doi:10.1016/j.envexpbot.2005.02.001.
- Lacroix RL, Keeney DR, Walsh LM (1970) Potentiometric titration of chloride in plant tissue extracts using the chloride ion electrode. Commun Soil Sci Plant 1:1–6.
- Leatherwood WR, Pharr DM, Dean LO, Williamson JD (2007) Carbohydrate content and root growth in seeds geminated under salt stress. J Am Soc Hortic Sci 132:876–882.
- Lingle SE, Wiegand CL (1997) Soil salinity and sugarcane juice quality. Field Crop Res 54:259–268. doi:10.1016/S0378-4290(97)00058-0.
- Lopez F, Vansuyt G, Casse-Delbart F, Fourcroy P (1996) Ascorbate peroxidase activity, not the mRNA level, is enhanced in salt-stressed Raphanus sativus plants. Physiol Plantarum 97:13–20. doi:10.1111/j.1399-3054.1996.tb00472.x.
- Medeiros CD, Oliveira MT, Rivas R, Baldani JI, Kido EA, Santos MG (2012) Gas exchange, growth, and antioxidant activity in sugarcane under biological nitrogen fixation. Photosynthetica 50:519–528. doi:10.1007/s11099-012-0059-x.
- Miller G, Suzuki N, Ciftci-Yilmaz SRM (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467. doi:10.1111/j.1365-3040.2009.02041.x.
- Mitler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410. doi:10.1016/S1360-1385(02)02312-9.
- Mittova V, Guy M, Tal M, Volokita M (2004) Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. J Exp Bot 55:1105–1113. doi:10.1093/jxb/erh113.
- Moore S, Stein WH (1948) Photometric ninhydrin method for use in the chromatography of amino acids. J Biol Chem 176:367–388.
- Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250. doi:10.1046/j.0016-8025.2001.00808.x.
- Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663. doi:10.1111/j.1469-8137.2005.01487.x.
- Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. doi:10.1146/annurev.arplant.59.032607.092911.
- Munns R, Schachtman DP, Condon AG (1995) The significance of a two-phase growth response to salinity in wheat and barley. Aust J Plant Physiol 22:561–569.
- Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880.
- Pagariya MC, Harikrishnan M, Kulkarni PA, Devarumath RM, Kawar PG (2011) Physio-biochemical analysis and transcript profiling of Saccharum officinarum L. submitted to salt stress. Acta Physiol Plant 33:1411–1424. doi:10.1007/s11738-010-0676-6.
- Pagariya MC, Devarumath RM, Kawar PG (2012) Biochemical characterization and identification of differentially expressed candidate genes in salt stressed sugarcane. Plant Sci 184:1–13. doi:10.1016/j.plantsci.2011.12.002.
- Patade VY, Bhargava S, Suprasanna P (2012) Transcript expression profiling of stress responsive genes in response to short-term salt or PEG stress in sugarcane leaves. Mol Biol Rep 39:3311–3318. doi:10.1007/s11033-011-1100-z.
- Pfaffl WM, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36.
- Pompelli MF, Martins SCV, Antunes WC, Chaves ARM, DaMatta FM (2010) Photosynthesis and photoprotection in coffee leaves is affected by nitrogen and light availabilities in winter conditions. J Plant Physiol 167:1052–1060. doi:10.1016/j.jplph.2010.03.001.
- Rivas R, Oliveira MT, Santos MG (2013) Three cycles of water deficit from seed to young plants of Moringa oleifera woody species improves stress tolerance. Plant Physiol Biochem 63:200–208. doi:10.1016/j.plaphy.2012.11.026.
- Rodríguez HG, Roberts JKM, Jordan WR, Drew MC (1997) Growth, water relations, and accumulation of organic and inorganic solutes in roots of maize seedlings during salt stress. Plant Physiol 113:881–893. doi:10.1104/pp.113.3.881.
- Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci India 86:407–421.
- Santos MG, Pimentel C (2009) Daily balance of leaf sugars and amino acids as indicators of common bean (Phaseolus vulgaris L.) metabolic response and drought intensity. Physiol Mol Biol Plants 15:23–30. doi:10.1007/s12298-009-0002-1.
- Saxena P, Srivastava RP, Sharma ML (2010) Studies on salinity stress tolerance in sugarcane varieties. Sugar Tech 12:59–63. doi:10.1007/s12355-010-0011-y.
- Sergio L, De Paola A, Cantore V, Pieralice M, Cascarano NA, Bianco VV, Di Venere D (2012) Effect of salt stress on growth parameters, enzymatic antioxidant system, and lipid peroxidation in wild chicory (Cichorium intybus L.). Acta Physiol Plant 34:2349–2358. doi:10.1007/s11738-012-1038-3.
- Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26. doi:10.1155/2012/217037.
- Silva FC (1999) Manual de análises químicas de solos, plantas e fertilizantes. Embrapa Informação Tecnológica, Brasília.
- Silveira JAG, Araújo SAM, Lima JPMS, Viégas RA (2009) Roots and leaves display contrasting osmotic adjustment mechanisms in response to NaCl-salinity in Atriplex nummularia. Environ Exp Bot 66:1–8. doi:10.1016/j.envexpbot.2008.12.015.
- Sinclair TR, Purcell LC (2005) Is a physiological perspective relevant in a ‘genocentric’ age? J Exp Bot 56:2777–2782. doi:10.1093/jxb/eri297.
- Sousa GG, Lacerda CF, Silva GL, Freitas CAS, Cavalcante LF, Sousa CHC (2010) Acumulação de biomassa, teores e extração de micronutrientes em plantas de milho irrigada com águas salinas. Rev Agrop Tec 31:1–10.
- Tester M, Davenport R (2003) Na⁺ tolerance and Na⁺ transport in higher plants. Ann Bot 91:503–527.
- Thomas RL, Sheard RW, Moyer JR (1967) Comparison of conventional and automated procedure for nitrogen, phosphorus and potassium analysis of plant material using single digest. Agron J 59:240–243.
- Willadino L, Gomes EWF, Silva EFF, Martins LSS, Camara TR (2011) Efeito do estresse salino em genótipos tetraplóides de bananeira. Rev Bras Eng Agric Ambient 15:53–59.
- Yoshimura K, Yabuta Y, Ishikawa T, Shigeoka S (2000) Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant Physiol 123:223–234.
- Zhao S, Fernald RD (2005) Comprehensive algorithm for quantitative real-time polymerase chain reaction. J Comput Biol 12: 1047–1064.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-e7e6fd0b-4c55-4801-aad1-fe680fbb1476