Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 5 |
Tytuł artykułu

Structural decomposition analysis of driving factors for energy use before and after the global financial crisis: evidence from top energy consumer Guangdong Province in China

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Understanding drivers for energy consumption is important for economic and environmentally sustainable development. To explore this issue, the SDA (structural decomposition analysis) method based on input-output theory was used to analyze the influencing mechanism of energy consumption in one of the top energy consumers, Guangdong Province in China, during 2002 to 2012. We divided the process into 2 stages: before and after the global financial crisis. The main conclusions are as follows: 1) Economic activity and population size are the main driving factors for the increase in energy consumption, while energy consumption intensity is the main factor restraining the increment, and the effects of final demand structure on energy consumption transformed from positive before the global financial crisis to negative after the global financial crisis. 2) Analysis of allocation of energy consumption changes caused by final demands shows that international and domestic trade had significant effects on changes in energy consumption. Although energy consumption embodied in international exports decreased after the global financial crisis, it is still the most significant important driver for the increments. Guangdong is a net exporter of embodied energy through international trade, while its energy-saving achievement is partly due to embodied energy transfers via China’s domestic trade.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
28
Numer
5
Opis fizyczny
p.3463-3474,fig.,ref.
Twórcy
autor
  • Key Laboratory of Guangdong for Utilization of Remote Sensing and Geographical Information System, Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou Institute of Geography, Guangdong Academy of Sciences, Guangzhou 510070, China
autor
  • Xinjiang Laboratory of Lake Environment and Resources in Arid Zone, Research Centre for Urban Development of the Silk Road Economic Belt, College of Geography Science and Tourism, Xinjiang Normal University, Urumqi 830054, Xinjiang, China
autor
  • College of Economic and Management, Huanghuai University, Zhumadian 463000, China
autor
  • Key Laboratory of Guangdong for Utilization of Remote Sensing and Geographical Information System, Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou Institute of Geography, Guangdong Academy of Sciences, Guangzhou 510070, China
autor
  • Key Laboratory of Guangdong for Utilization of Remote Sensing and Geographical Information System, Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou Institute of Geography, Guangdong Academy of Sciences, Guangzhou 510070, China
Bibliografia
  • 1. CHU S., MAJUMDAR A. Opportunities and challenges for a sustainable energy future. Nature, 488, 294, 2012.
  • 2. BP. Statistical Review of World Energy. 2017.
  • 3. WANG C., WANG F. China can lead on climate change. Science, 357, 764, 2017.
  • 4. PETERS G.P., MARLAND G., LE QU RC., BODEN T., CANADELL J.G., RAUPACH M.R. Rapid growth in CO₂ emissions after the 2008-2009 global financial crisis. Nature Clim Change, 2, 2, 2012.
  • 5. MI Z., MENG J., GUAN D., SHAN Y., SONG M., WEI Y.-M., LIU Z., HUBACEK K. Chinese CO₂ emission flows have reversed since the global financial crisis. Nature Communications, 8, 1712, 2017.
  • 6. LOPEZ L.-A., ARCE G., ZAFRILLA J. Financial Crisis, Virtual Carbon in Global Value Chains, and the Importance of Linkage Effects. The Spain-China Case. Environ Sci Technol, 48, 36, 2014.
  • 7. MYERS J.G., NAKAMURA L.I. Saving energy in manufacturing: the post-embargo record: Ballinger, 1978.
  • 8. BOSSANYI E. UK primary energy consumption and the changing structure of final demand. Energy Policy, 7, 253, 1979.
  • 9. ANG B.W., LEE S.Y. Decomposition of industrial energy consumption: Some methodological and application issues. Energy Econ, 16, 83, 1994.
  • 10. ANG B.W. Decomposition methodology in industrial energy demand analysis. Energy, 20, 1081, 1995.
  • 11. XU X.Y., ANG B.W. Analysing residential energy consumption using index decomposition analysis. ApEn, 113, 342, 2014.
  • 12. ANG B.W., LIU F.L. A new energy decomposition method: perfect in decomposition and consistent in aggregation. Energy, 26, 537, 2001.
  • 13. CHOI K.-H., ANG B.W. Decomposition of aggregate energy intensity changes in two measures: ratio and difference. Energy Econ, 25, 615, 2003.
  • 14. ANG B.W., XU X.Y. Tracking industrial energy efficiency trends using index decomposition analysis. Energy Econ, 40, 1014, 2013.
  • 15. WANG C., WANG F., ZHANG H., YE Y., WU Q., SU Y. Carbon emissions decomposition and environmental mitigation policy recommendations for sustainable development in Shandong province. Sustainability, 6, 8164, 2014.
  • 16. WANG C., ZHANG X., WANG F., LEI J., ZHANG L. Decomposition of energy-related carbon emissions in Xinjiang and relative mitigation policy recommendations. Frontiers of Earth Science, 9, 65, 2015.
  • 17. WANG F., WANG C., SU Y., JIN L., WANG Y., ZHANG X. Decomposition Analysis of Carbon Emission Factors from Energy Consumption in Guangdong Province from 1990 to 2014. Sustainability, 9, 274, 2017.
  • 18. ANG B.W. LMDI decomposition approach: A guide for implementation. Energy Policy, 86, 233, 2015.
  • 19. WANG H., ANG B.W., SU B. Assessing drivers of economy-wide energy use and emissions: IDA versus SDA. Energy Policy, 107, 585, 2017.
  • 20. ROSE A., CASLER S. Input-Output Structural Decomposition Analysis: A Critical Appraisal. Econ Systems Res, 8, 33, 1996.
  • 21. HOEKSTRA R., VAN DEN BERGH J.C.J.M. Comparing structural decomposition analysis and index. Energy Econ, 25, 39, 2003.
  • 22. WANG C., WANG F. Structural decomposition analysis of carbon emissions and policy recommendations for energy sustainability in Xinjiang. Sustainability, 7, 7548, 2015.
  • 23. LEONTIEF W. Quantitative Input and Output Relations in the Economic Systems of the United States. RvE&S, 18, 105, 1936.
  • 24. LEONTIEF W. Environmental Repercussions and the Economic Structure: An Input-Output Approach. RvE&S, 52, 262, 1970.
  • 25. WANG C., WANG F., ZHANG X., ZHANG H. Influencing mechanism of energy-related carbon emissions in Xinjiang based on the input-output and structural decomposition analysis. J Geogr Sci, 27, 365, 2017.
  • 26. ÖSTBLOM G. Energy use and structural changes: Factors behind the fall in Sweden’s energy output ratio. Energy Econ, 4, 21, 1982.
  • 27. PL GER E. The Effects of Structural Changes on Danish Energy Consumption. Conference The Effects of Structural Changes on Danish Energy Consumption, Berlin, Heidelberg. Springer Berlin Heidelberg, p. 211.
  • 28. GOULD B.W., KULSHRESHTHA S.N. An interindustry analysis of structural change and energy use linkages in the Saskatchewan economy. Energy Econ, 8, 186, 1986.
  • 29. GOWDY J.M., MILLER J.L. Technological and Demand Change in Energy Use: An Input-Output Analysis. Environment and Planning A: Economy and Space, 19, 1387, 1987.
  • 30. CHEN C.Y., ROSE A. A Structural Decomposition Analysis of Changes in Energy Demand in Taiwan: 1971-1984. Energy J, 11, 127, 1990.
  • 31. SU B., ANG B.W. Structural decomposition analysis applied to energy and emissions: Some methodological developments. Energy Econ, 34, 177, 2012.
  • 32. SU B., ANG B.W. Structural decomposition analysis applied to energy and emissions: aggregation issues. Econ Systems Res, 24, 299, 2012.
  • 33. LENZEN M. Structural analyses of energy use and carbon emissions – an overview. Econ Systems Res, 28, 119, 2016.
  • 34. ROSE A., CHEN C.Y. Sources of change in energy use in the U.S. economy, 1972-1982: A structural decomposition analysis. Resources Energy, 13, 1, 1991.
  • 35. CHEN C.-Y., WU R.-H. Sources of change in industrial electricity use in the Taiwan economy, 1976-1986. Energy Econ, 16, 115, 1994.
  • 36. LIN X., POLENSKE K.R. Input-Output Anatomy of China’s Energy Use Changes in the 1980s. Econ Systems Res, 7, 67, 1995.
  • 37. GARBACCIO R.F., HO M.S., JORGENSON D.W. Why Has the Energy-Output Ratio Fallen in China? The Energy Journal, 20, 63, 1999.
  • 38. MUKHOPADHYAY K., CHAKRABORTY D. India’s Energy Consumption Changes during 1973/74 to 1991/92. Econ Systems Res, 11, 423, 1999.
  • 39. JACOBSEN H.K. Energy Demand, Structural Change and Trade: A Decomposition Analysis of the Danish Manufacturing Industry. Econ Systems Res, 12, 319, 2000.
  • 40. KAGAWA S., INAMURA H. A Structural Decomposition of Energy Consumption Based on a Hybrid Rectangular Input-Output Framework: Japan’s Case. Econ Systems Res, 13, 339, 2001.
  • 41. DE NOOIJ M., VAN DER KRUK R., VAN SOEST D.P. International comparisons of domestic energy consumption. Energy Econ, 25, 359, 2003.
  • 42. KAGAWA S., INAMURA H. A Spatial Structural Decomposition Analysis of Chinese and Japanese Energy Demand: 1985-1990. Econ Systems Res, 16, 279, 2004.
  • 43. ALCNTARA V., DUARTE R. Comparison of energy intensities in European Union countries. Results of a structural decomposition analysis. Energy Policy, 32, 177, 2004.
  • 44. THI ANH TUYET N., ISHIHARA K.N. Analysis of changing hidden energy flow in Vietnam. Energy Policy, 34, 1883, 2006.
  • 45. OKUSHIMA S., TAMURA M. Multiple calibration decomposition analysis: Energy use and carbon dioxide emissions in the Japanese economy, 1970-1995. Energy Policy, 35, 5156, 2007.
  • 46. PARK H.-C., HEO E. The direct and indirect household energy requirements in the Republic of Korea from 1980 to 2000 – An input-output analysis. Energy Policy, 35, 2839, 2007.
  • 47. CHAI J., GUO J.-E., WANG S.-Y., LAI K.K. Why does energy intensity fluctuate in China? Energy Policy, 37, 5717, 2009.
  • 48. WACHSMANN U., WOOD R., LENZEN M., SCHAEFFER R. Structural decomposition of energy use in Brazil from 1970 to 1996. ApEn, 86,578,2009.
  • 49. WEBER C.L. Measuring structural change and energy use: Decomposition of the US economy from 1997 to 2002. Energy Policy, 37, 1561, 2009.
  • 50. CAO S., XIE G., ZHEN L. Total embodied energy requirements and its decomposition in China’s agricultural sector. Ecolog Econ, 69, 1396, 2010.
  • 51. LIU H., XI Y., GUO J.E., LI X. Energy embodied in the international trade of China: An energy input–output analysis. Energy Policy, 38, 3957, 2010.
  • 52. OKUSHIMA S., TAMURA M. What causes the change in energy demand in the economy?: The role of technological change. Energy Econ, 32, S41, 2010.
  • 53. FAN Y., XIA Y. Exploring energy consumption and demand in China. Energy, 40, 23, 2012.
  • 54. XIA Y., YANG C., CHEN X. Structural decomposition analysis on China’s energy intensity change for 1987-2005. Journal of Systems Science and Complexity, 25, 156, 2012.
  • 55. ZENG L., XU M., LIANG S., ZENG S., ZHANG T. Revisiting drivers of energy intensity in China during 1997-2007: A structural decomposition analysis. Energy Policy, 67, 640, 2014.
  • 56. ZHANG H., LAHR M.L. China’s energy consumption change from 1987 to 2007: A multi-regional structural decomposition analysis. Energy Policy, 67, 682, 2014.
  • 57. LIU H., POLENSKE K.R., GUILHOTO J.J.M., XI Y. Direct and indirect energy use in China and the United States. Energy, 71, 414, 2014.
  • 58. XIA Y., FAN Y., YANG C. Assessing the impact of foreign content in China’s exports on the carbon outsourcing hypothesis. ApEn, 150, 296, 2015.
  • 59. WENZLIK M., EISENMENGER N., SCHAFFARTZIK A. What Drives Austrian Raw Material Consumption?: A Structural Decomposition Analysis for the Years 1995 to 2007. Journal of Industrial Ecology, 19,814,2015.
  • 60. LAN J., MALIK A., LENZEN M., MCBAIN D., KANEMOTO K. A structural decomposition analysis of global energy footprints. ApEn, 163, 436, 2016.
  • 61. SUPASA T., HSIAU S.-S., LIN S.-M., WONGSAPAI W., WU J.-C. Has energy conservation been an effective policy for Thailand? An input-output structural decomposition analysis from 1995 to 2010. Energy Policy, 98, 210, 2016.
  • 62. LLOP M. Changes in energy output in a regional economy: A structural decomposition analysis. Energy, 128, 145, 2017.
  • 63. SU B., ANG B.W. Multiplicative structural decomposition analysis of aggregate embodied energy and emission intensities. Energy Econ, 65, 137, 2017.
  • 64. WANG H., ANG B.W., SU B. Multiplicative structural decomposition analysis of energy and emission intensities: Some methodological issues. Energy, 123, 47, 2017.
  • 65. WANG C., WANG F., ZHANG H. The process of energy-related carbon emissions and influencing mechanism research in Xinjiang. Acta Ecol Sin, 36, 2151, 2016.
  • 66. MINX J.C., BAIOCCHI G., PETERS G.P., WEBER C.L., GUAN D., HUBACEK K. A “Carbonizing Dragon”: China’s Fast Growing CO₂ Emissions Revisited. Environ Sci Technol, 45, 9144, 2011.
  • 67. PETERS G.P., WEBER C.L., GUAN D., HUBACEK K. China’s Growing CO₂ Emissions A Race between Increasing Consumption and Efficiency Gains. Environ Sci Technol, 41, 5939, 2007.
  • 68. DUARTE R., PINILLA V., SERRANO A. Income, Economic Structure and Trade: Impacts on Recent Water Use Trends in the European Union. Sustainability, 10, 205, 2018.
  • 69. ROSON R., SARTORI M. A Decomposition and Comparison Analysis of International Water Footprint Time Series. Sustainability, 7, 5304, 2015.
  • 70. SUPASA T., HSIAU S.-S., LIN S.-M., WONGSAPAI W., WU J.-C. Household Energy Consumption Behaviour for Different Demographic Regions in Thailand from 2000 to 2010. Sustainability, 9, 2328, 2017.
  • 71. WANG C., ZHANG X., ZHANG H., WANG F. Influencing mechanism of energy-related carbon emissions in Xinjiang based on the input-output and structural decomposition analysis. Acta Geographica Sinica, 71, 1105, 2016.
  • 72. LIANG S., ZHANG T. What is driving CO₂ emissions in a typical manufacturing center of South China? The case of Jiangsu Province. Energy Policy, 39, 7078, 2011.
  • 73. SU B., HUANG H.C., ANG B.W., ZHOU P. Input-output analysis of CO₂ emissions embodied in trade: The effects of sector aggregation. Energy Econ, 32, 166, 2010.
  • 74. SU B., ANG B.W., LOW M. Input-output analysis of CO₂ emissions embodied in trade and the driving forces: Processing and normal exports. Ecolog Econ, 88, 119, 2013.
  • 75. SU B., THOMSON E. China’s carbon emissions embodied in (normal and processing) exports and their driving forces, 2006-2012. Energy Econ, 59, 414, 2016.
  • 76. CHEN B., LI J.S., CHEN G.Q., WEI W.D., YANG Q., YAO M.T., SHAO J.A., ZHOU M., XIA X.H., DONG K.Q., XIA H.H., CHEN H.P. China’s energy-related mercury emissions: Characteristics, impact of trade and mitigation policies. Journal of Cleaner Production, 141, 1259, 2017.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-e6d92e17-fe48-4988-bbe9-8fca0623c6d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.