Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 70 | 04 |
Tytuł artykułu

Wpływ nanocząstek metali szlachetnych na układ immunologiczny zwierząt

Autorzy
Warianty tytułu
EN
Impact of noble metal nanoparticles on the immune system of animals
Języki publikacji
PL
Abstrakty
EN
Noble metal nanoparticles, especially silver due to its antimicrobial properties, are amongst the most widely used types of nanomaterials, and so the possibility of an organism’s exposure to them is relatively high. Excluding injections, there are three natural routes they can accidentally enter the body – the skin, lungs and the alimentary tract. Research on rodents indicate that after inhalation, injection or oral administration silver, gold and copper nanoparticles can easily enter the systemic circulation and reach the internal organs. Particularly vulnerable to the harmful effects of nanoparticles are organs with an extended reticuloendothelial system, such as the spleen, where the accumulation of nanoparticles occurs. It is well proved that metallic nanoparticles are easily absorbed by macrophages located in lymphoid tissues but cannot be destroyed inside the cells. They remain unchanged in phagosomes and chronically stimulate the cells to pro-inflammatory cytokine production. They can also interact with other cell types present in the local environment, e.g. lymphocytes, which can lead to an inadequate immunological response of the organism. Many authors have described the pro-inflammatory effect of noble metal nanoparticles, both local to the application site and generalized. What is more, silver nanoparticles were able to disturb the Th1/Th2 balance or even cause an allergic response of the organism. The beneficial impact of silver nanoparticles on the immune response occurs only when they were applied externally in the form of dressings or ointments in the treatment of wounded or inflamed skin. In such cases nanosilver exhibited immunoregulatory properties accelerating the healing. An explanation for this mode of action may be the fact of relatively poor skin penetration by nanoparticles, limiting their effect to the local tissues only.
Wydawca
-
Rocznik
Tom
70
Numer
04
Opis fizyczny
s.204-208,bibliogr.
Twórcy
  • Katedra Mikrobiologii i Immunologii Klinicznej, Wydział Medycyny Weterynaryjnej, Uniwersytet Warmińsko-Mazurski w Olsztynie, ul.Oczapowskiego 13, 10-718 Olsztyn
Bibliografia
  • 1. Ahmadi F., Kurdestany A. H.: The impact of silver nano particles on growth performance, lymphoid organs and oxidative stress indicators in broiler chicks. Global Veterinaria 2010, 5, 366-370.
  • 2. Balasubramanian S. K., Jittiwat J., Manikandan J., Ong C. N., Yu L. E., Ong W. Y.: Biodistibution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats. Biomaterials 2010, 31, 2034-2042.
  • 3. Bhol K. C., Schechter P. J.: Topical nanocrystalline silver cream suppresses inflammatory cytokines and induces apoptosis of inflammatory cells in a murine model of allergic contact dermatitis. Br. J. Dermatol. 2005, 152, 1235-1242.
  • 4. Chen Z., Meng H., Xing G., Chen C., Zhao Y., Jia G., Wang T., Yuan H., Ye C., Zhao F., Chai Z., Zhu C., Fang X., Ma B., Wan L.: Acute toxicological effects of copper nanoparticles in vivo. Toxicol. Lett. 2006, 163, 109-120.
  • 5. Cohen D., Soroka Y., Ma’or Z., Oron M., Portugal-Cohen M., Brégégère F. M., Berhanu D., Valsami-Jones E., Hai N., Milner Y.: Evaluation of topically applied copper (II) oxide nanoparticle cytotoxicity in human skin organ culture. Toxicol. in Vitro 2013, 27, 292-298.
  • 6. Fondevila M., Herrer R., Casallas M. C., Abecia L., Ducha J. J.: Silver nanoparticles as a potential antimicrobial additive for weaned pigs. Anim. Feed Sci. Technol. 2009, 150, 259-269.
  • 7. Gonzales-Eguia A., Fu C. M., Lu F. Y., Lien T. F.: Effects of nanocopper on copper availability and nutrients digestibility, growth performance and serum traits of piglets. Livest. Sci. 2009, 126, 122-129.
  • 8. Greulich C., Diendorf J., Geßmann J., Simon T., Habijan T., Eggeler G., Schildhauer T. A., Epple M., Köller M.: Cell type-specific responses of peripheral blood mononuclear cells to silver nanoparticles. Acta Biomater. 2011, 7, 3505-3514.
  • 9. Hillyer J. F., Albrecht R. M.: Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J. Pharm. Sci. 2001, 90, 1927-1936.
  • 10. Jovanović B., Palić D.: Immunotoxicology of non-functionalized engineered nanoparticles in aquatic organism with special emphasis on fish-review of current knowledge, gap identification, and call for further research. Aquat. Toxicol. 2012, 118-119, 141-151.
  • 11. Kim Y. S., Kim J. S., Cho H. S., Rha D. S., Kim J. M., Park J. D., Choi B. S., Lim R., Chang H. K., Chung Y. H., Kwon I. H., Jeong J., Han B. S., Yu I. J.: Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal. Toxicol. 2008, 20, 575-583.
  • 12. Kiruba Daniel S. C. G., Tharmaraj V., Anitha Sironmani T., Pitchumani K.: Toxicity and immunological activity of silver nanoparticles. Appl. Clay Sci. 2010, 48, 547-551.
  • 13. Larese F. F., D’Agostin F., Crosera M., Adami G., Renzi N., Bovenzi M., Maina G.: Human skin penetration of silver nanoparticles through intact and damaged skin. Toxicology 2009, 255, 33-37.
  • 14. Lankveld D. P. K., Oomen A. G., Krystek P., Neigh A., Troost – de Jong A., Noorlander C. W., Van Eijkeren J. C. H., Geertsma R. E., De Jong W. H.: The kinetics of the tissue distribution of silver nanoparticles of different sizes. Biomaterials 2010, 31, 8350-8361.
  • 15. Leroy P., Sapin-Minet A., Pitarch A., Boudier A., Tournebize J.: Interactions between gold nanoparticles and macrophages: activation or inhibition? Nitric Oxide 2011, 25, 54-56.
  • 16. Liu H., Yang D., Yang H., Zhang H., Zhang W., Fang Y. J., Lin Z., Tian L., Lin B., Yan J., Xi Z.: Comparative study of respiratory tract immune toxicity induced by three sterilization nanoparticles: silver, zinc oxide and titanium dioxide. J. Hazard. Mater. 2013, 248-249, 478-486.
  • 17. Małaczewska J.: Effect of silver nanoparticles on splenocyte activity and selected cytokine levels in the mouse serum. Bull. Vet. Inst. Pulawy 2011, 55, 317-322.
  • 18. Małaczewska J.: The effect of silver nanoparticles on splenocyte activity and selected cytokine levels in the mouse serum at early stage of experimental endotoxemia. Pol. J. Vet. Sci. 2011, 14, 579-604.
  • 19. Małaczewska J., Siwicki A. K.: The in vitro effect of commercially available noble metal nanocolloids on the rainbow trout (Oncorhynchus mykiss) leukocyte and splenocyte activity. Pol. J. Vet. Sci. 2013, 16, 77-84.
  • 20. Martinez-Gutierrez F., Thi E. P., Silverman J. M., de Oliveira C. C., Svensson S. L., Vanden Hoek A., Sánchez E. M., Reiner N. E., Gaynor E. C., Pryzdial E. L., Conway E. M., Orrantia E., Ruiz F., Av-Gay Y., Bach H.: Antibacterial activity, inflammatory response, coagulation and cytotoxicity effects of silver nanoparticles. Nanomedicine 2012, 8, 328-336.
  • 21. Meng H., Chen Z., Xing G., Yuan H., Chen C., Zhao F., Zhang C., Zhao Y.: Ultrahigh reactivity provokes nanotoxicity: Explanation of oral toxicity of nano-copper particles. Toxicol. Lett. 2007, 175, 102-110.
  • 22. Mitra S., Keswani T., Ghosh N., Goswami S., Datta A., Das S., Maity S., Bhattacharyya A.: Copper induced immunotoxicity promote differential apoptotic pathways in spleen and thymus. Toxicology 2013, 306, 74-84.
  • 23. Nadworny P. L., Wang J. F., Tredget E. E., Burrell R. E.: Anti-inflammatory activity of nanocrystalline silver in a porcine contact dermatitis model. Nanomedicine 2008, 4, 241-251.
  • 24. Nel A., Xia T., Mädler L., Li N.: Toxic potential of materials at the nanolevel. Science 2006, 311, 622-627.
  • 25. Park E. J., Bae E., Yi J., Kim Y., Choi K., Lee S. H., Yoon J., Lee B. C., Park K.: Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ. Toxicol. Pharmacol. 2010, 30, 162-168.
  • 26. Park E. J., Yi J., Kim Y., Choi K., Park K.: Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol. in Vitro 2010, 24, 872-878.
  • 27. Park M. V. D. Z., Neigh A. M., Vermeulen J. P., Fonteyne L. J. J., Verharen H. W., Briede J. J., Loveren H., Jong W. H.: The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 2011, 32, 9810-9817.
  • 28. Schulz M., Ma-Hoc L., Brill S., Strauss V., Treumann S., Gröters S., Ravenzwaay B., Landsiedel R.: Investigation on the genotoxicity of different sizes of gold nanoparticles to the lungs of rats. Mutat. Res. 2012, 745, 51-57.
  • 29. Shin S. H., Ye M. K., Kim H. S., Kang H. S.: The effects of nano-silver on the proliferation and cytokine expression by peripheral blood mononuclear cells. Int. Immunopharmacol. 2007, 7, 1813-1818.
  • 30. Sonavane G., Tomoda K., Sano A., Ohshima H., Terada H., Makino K.: In vitro permeation of gold nanoparticles through rat skin and rat intestine: effect of particle size. Colloids Surf. B Biointerfaces 2008, 65, 1-10.
  • 31. Stebounova L. V., Adamcakova-Dodd A., Kim J. S., Park H., O’Shaughnessy P. T., Grassian V. H., Thorne P. S.: Nanosilver induces minimal lung toxicity or inflammation in a subacute murine inhalation model. Part. Fibre Toxicol. 2011, 8, 5.
  • 32. Studer A. M., Limbach L. K., Van Duc L., Krumeich F., Athanassiou E. K., Gerber L. C., Moch H., Stark W. J.: Nanoparticle cytotoxicity depends on intracellular solubility: comparison of stabilized copper metal and degradable copper oxide nanoparticles. Toxicol. Lett. 2010, 197, 169-174.
  • 33. Takenaka S., Karg E., Möller W., Roth C., Ziesenis A.: A morphologic study on the fate of ultrafine silver particles: distribution pattern of phagocytized metallic silver in vitro and in vivo. Inhal. Toxicol. 2000, 12, 291-299.
  • 34. Takenaka S., Karg E., Roth C., Schulz H., Ziesenis A., Heinzmann U., Schramel P., Heyder J.: Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ. Health Perspect. 2001, 109 Suppl. 4, 547-551.
  • 35. Tian J., Wong K. K. Y., Ho C. M., Lok C. N., Yu W. Y., Che C. M., Chiu J. F., Tam P. K. H.: Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem. 2007, 2, 129-136.
  • 36. Wright J. B., Lam K., Buret A. G., Olson M. E., Burrell R. E.: Early healing events in a porcine model of contaminated wounds: effect of nanocrystalline silver on matrix metalloproteinases, cell apoptosis, and healing. Wound Repair Regen. 2002, 10, 141-151.
  • 37. Xu Y., Tang H., Liu J. H., Wang H., Liu Y.: Evaluation of the adjuvant effect of silver nanoparticles both in vitro and in vivo. Toxicol Lett. 2013, 219, 42-48.
  • 38. Yang E. J., Kim S., Kim J. S., Choi I. H.: Inflammasome formation and IL-1β release by human blood monocytes in response to silver nanoparticles. Biomaterials 2012, 33, 6858-6867.
  • 39. Yen H. J., Hsu S. H., Tsai C. L.: Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small 2009, 5, 1553-1561.
  • 40. Zhang X. D., Wu H. Y., Wu D., Wang Y. Y., Chang J. H., Zhai Z. B., Meng A. M., Liu P. X., Zhang L. A., Fan F. Y.: Toxicologic effects of gold nanoparticles in vivo by different administration routes. Int. J. Nanomedicine 2010, 5, 771-781.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-e67ee6dd-bc27-4213-9eb6-dd56fe0c80a9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.