Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 11 |
Tytuł artykułu

Isolation and characterization of a C-repeat binding factor (CBF)-like gene in cassava (Manihot esculenta Crantz)

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cassava (Manihot esculenta Crantz) is a tropical and subtropical plant and susceptible to chilling injury. In this research, a C-repeat binding factor (CBF)-like gene (GenBank accession number JQ339740) has been isolated from cassava, and named as MeCBF1. The full-length DNA of MeCBF1 is 1,037 base pair (bp), without intron. The 5' untranslated region is 102 bp, the 3' untranslated region is 239 bp, and the open reading frame is 696 bp encoding 231 amino acids. The deduced amino acid sequence of MeCBF1 contains two CBF conserved motifs of PKK(P/R)AGRxKFxETRHP and DSxWR. The MeCBF1 shows 83 % homology to the CRT/DRE binding factor 1 from Hevea brasiliensis (Accession no. AAY43213.1). However, in cassava, the MeCBF1 target genes showed low similarity to the CBF/DREB regulated genes in Arabidopsis thaliana. Quantitative real-time PCR showed that the MeCBF1 was highly expressed in stems and leaves, and lowly expressed in roots. In addition, the expression of the MeCBF1 quickly responded to low temperature stress (4°C). These results suggest that, the MeCBF1 is functional in cassava. Further studies on the MeCBF1 might be helpful to reveal molecular mechanism of cassava’s high sensitivity to low temperature.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
36
Numer
11
Opis fizyczny
p.3089-3093,fig.,ref.
Twórcy
autor
  • Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture, Haikou, 570711, China
autor
  • Hainan Agricultural Science and Technology 110 Co. LTD, Haikou, 570102, China
autor
  • Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture, Haikou, 570711, China
  • College of Agriculture, Hainan University, Haikou, 570228, China
autor
  • Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture, Haikou, 570711, China
  • College of Agriculture, Hainan University, Haikou, 570228, China
autor
  • Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture, Haikou, 570711, China
  • College of Agriculture, Hainan University, Haikou, 570228, China
autor
  • Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture, Haikou, 570711, China
autor
  • Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture, Haikou, 570711, China
autor
  • Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture, Haikou, 570711, China
autor
  • Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture, Haikou, 570711, China
autor
  • College of Agriculture, Hainan University, Haikou, 570228, China
autor
  • Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture, Haikou, 570711, China
Bibliografia
  • Badawi M, Danyluk J, Boucho B, Houde M, Sarhan F (2007) The CBF gene family in relationship to the phylogenetic complexity of cereal CBFs. Mol Genet Genomic 277:533–554
  • Benedict C, Skinner JS, Meng R, Chang Y, Bhalerao R, Huner NP, Finn CE, Chen TH, Hurry V (2006) The CBF1-dependent low temperature signalling pathway, regulon, and increase in freeze tolerance are conserved in Populus spp. Plant Cell Environ 29:1259–1272
  • Bairoch A, Bucher P, Hofmann K (1997) The PROSITE database, its status in 1997. Nucleic Acids Res 25:217–221
  • Canella D, Gilmour SJ, Kuhn LA, Thomashow MF (2010) DNA binding by the Arabidopsis CBF1 transcription factor requires the PKKP/RAGRxKF-xETRHP signature sequence. Biochim Biophys Acta 1799:454–462
  • Champ KI, Febres VJ, Moore GA (2007) The role of CBF transcriptional activators in two citrus species (Poncirus and Citrus) with contrasting levels of freezing tolerance. Physiol Plant 129:529–541
  • Cock JH (1982) Cassava: a basic energy-source in the tropics. Science 218:755–762
  • Cock JH, Rosas S (1975) Ecophysiology of cassava. Symposium on ecophysiology of tropical crops. Communications Division of CEPLAC, Brazil, pp 1–14
  • Dong C, Zhang Z, Qin Y, Ren J, Huang J, Wang B, Lu H, Cai B, Tao J (2013) VaCBF1 from Vitis amurensis associated with cold acclimation and cold tolerance. Acta Physiologiae Plantarum 35(10):2975–2984
  • Gao MJ, Allard G, Byass L, Flanagan AM, Singh J (2002) Regulation and characterization of four CBF transcription factors from Brassica napus. Plant Mol Biol 49:459–471
  • Gilmour SJ, Thomashow MF, Fowler SG (2004) Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. Plant Mol Biol 54:767–781
  • Gutha LR, Reddy AR (2008) Rice DREB1B promoter shows distinct stress-specific responses, and the overexpression of cDNA in tobacco confers improved abiotic and biotic stress tolerance. Plant Mol Biol 68:533–555
  • He LG, Wang HL, Liu DC, Zhao YJ, Xu M, Zhu M, Wei GQ, Sun ZH (2012) Isolation and expression of a cold-responsive gene PtCBF in Poncirus trifoliata and isolation of citrus CBF promoters. Biol Plant 56(3):484–492
  • Li R, Hu X, Li K, Fu S, Guo J (2009) CaCl2 enhanced somatic embryogenesis in Manihot esculenta Ctantz. Biosci Biotechnol Biochem 73(11):2513–2515
  • Nguyen TLT, Gheewala SH, Garivait S (2007) Full chain energy analysis of fuel ethanol from cassava in Thailand. Environ Sci Technol 41:4135–4142
  • Novillo F, Medina J, Salinas J (2007) Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proc nat Acad Sci USA 104:21002–21007
  • Oakenfull RJ, Baxter R, Knight MR (2013) A C-repeat binding factor transcriptional activator (CBF/DREB1) from European bilberry (Vaccinium myrtillus) induces freezing tolerance when expressed in Arabidopsis thaliana. PLoS ONE 8(1):e54119. doi:10.1371/journal.pone.0054119
  • Peng YL, Wang YS, Cheng H, Sun CC, Wu P, Wang LY, Fei J (2013) Characterization and expression analysis of three CBF/DREB1 transcriptional factor genes from mangrove Avicennia marina. Aquat Toxicol 140–141:68–76
  • Polashock JJ, Arora R, Peng YH, Naik D, Rowland LJ (2010) Functional identification of a C-repeat binding factor transcriptional activator from blueberry associated with cold acclimation and freezing tolerance. J Am Soc Hortic Sci 135:40–48
  • Qin F, Shinozaki K, Yamaguchi-Shinozaki K (2011) Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant Cell Physiol 52:1569–1582
  • Rodziewicz P, Swarcewicz B, Chmielewska K, Wojakowska A, Stobiecki M (2014) Influence of abiotic stresses on plant proteome and metabolome changes. Acta Physiol Plant 36:1–19
  • Sakai A, Larcher W (1987) Frost survival of plants: responses and adaptation to freezing stress. Springer, Berlin
  • Thomashow MF, Gilmour SJ, Stockinger EJ, Jaglo-Ottosen KR, Zarka DG (2001) Role of the Arabidopsis CBF transcriptional activators in cold acclimation. Physiol Plant 112:171–175
  • Walworth AE, Rowland LJ, Polashock JJ, Hancock JF, Song GQ (2012) Overexpression of a blueberry-derived CBF gene enhances cold tolerance in a southern highbush blueberry cultivar. Mol Breed 30:1313–1323
  • Xiao HG, Siddiqua M, Braybrook S, Nassuth A (2006) Three grape CBF/DREB1 genes respond to low temperature, drought and abscisic acid. Plant Cell Environ 29:1410–1421
  • Xu J, Luo X (2011) Cloning and sequence analysis of actin gene fragment from cassava. Biotechnol bulletin 6:65–70 (in Chinese)
  • Yang W, Liu XD, Chi XJ, Wu CA, Li YZ, Song LL, Liu XM, Wang YF, Wang FW, Zhang C, Liu Y, Zong JM, Li HY (2011) Dwarf apple MbDREB1 enhances plant tolerance to low temperature, drought, and salt stress via both ABA-dependent and ABAindependent pathways. Planta 233(2):219–229
  • Zhang X, Fowler SG, Cheng HM, Lou YG, Rhee SY, Stockinger EJ, Thomashow MF (2004) Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. Plant J 39:905–919
  • Zhang CK, Lang P, Dane F, Ebel RC, Singh NK, Locy RD, Dozier WA (2005) Cold acclimation induced genes of trifoliate orange (Poncirus trifoliata). Plant Cell Rep 23:764–769
  • Zhou MQ, Shen C, Wu LH, Tang KX, Lin J (2011) CBF-dependent signaling pathway: a key responder to low temperature stress in plants. Crit Rev Biotechnol 31:186–192
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-e433a363-e288-437f-93aa-ae6de667bff6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.