Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 29 | 3 |
Tytuł artykułu

Expression profile of MYF5 and MYF6 genes in skeletal muscles of young growing gilts of five breeds at different ages, based on the most stable reference genes

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The expression profile was evaluated of MYF5 and MYF6 genes in skeletal muscles of young growing Polish Large White (PLW), Polish Landrace (PL), Pietrain (PIE), Duroc (DUR) and Pulawska (PUL) gilts at different ages. Normalization of MYF5 and MYF6 was performed on reliable porcine reference genes (PRGs), where expression stabilities of nine of them (ACTB, B2M, GAPDH, SDHA, HPRTI, RPL13A, YWHAZ, TBP, TOP2B) were evaluated by RT-qPCR method and NormFinder software. Results revealed HPRTI, TBP and TOP2B as highly stable and PRGs. The age-dependent and breed-specific skeletal muscle expression comparisons revealed highly significant (P<0.01) differences in MYF6 expression levels of all skeletal muscles among investigated breeds. MYF6 gene expression in PIE and DUR were higher compared to PLW, PL and PUL gilts. Contrarily, paired-wise comparison of MYF5 gene expression showed only significant difference between DUR and PUL for semimembranosus, and PL and PLW, DUR and PL, PIE and PL, DUR and PUL and PIE and PUL for gluteus medius muscle. There was no significant relationship identified between gilt ages and the level of expression of MYF5 and MYF6 genes. However, their highest expression was identified in longissimus dorsi followed by gluteus medius and semimembranosus muscles. It is concluded that normalization of gene expression has to be done on more than one PRG to reduce the errors in transcription level estimates. Moreover, significantly different breed-specific expression of porcine MYF5 and MYF6 allowed the authors to prioritize these genes as potential candidate genes for trait-associated study.
Wydawca
-
Rocznik
Tom
29
Numer
3
Opis fizyczny
p.231-246,fig.,ref.
Twórcy
  • Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, 05-552 Wolka Kosowska, Poland
autor
autor
autor
autor
autor
autor
autor
autor
autor
Bibliografia
  • ANDERSEN C.L., JENSEN J.L., ORNTOFT T.F., 2004 – Normalization of real-time quantitative reverse transcription-PCR data. A model-based variance estimation approach to identify genes suited for normalization applied to bladder and colon cancer data sets. Cancer Research 64, 5245-5250.
  • BUSTIN S.A., 2000 – Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. Journal of Molecular Endocrinology 25, 169-193.
  • CHANG K.C., DA COSTA N., BLACKLEY N., SOUTHWOOD O., EVANS G., PLASTOW G.,WOOD J.D., RICHARDSON R.I., 2003 – Relationships of myosin heavy chain fibre types to meat quality traits in traditional and modern pigs. Meat Science 64, 93-103.
  • CHOMCZYNSKI P., SACCHI N., 1987 – Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry 162, 156-159.
  • CIESLAK D., KURYŁ J., KAPELAŃSKI W., PIERZCHAŁA M., GRAJEWSKA S., BOCIAN M., 2002 – A relationship between genotypes at MYOG, MYF3 and MYF5 loci and carcass meat and fat deposition traits in pigs. Animal Science Papers and Reports 20, 77-92.
  • DHEDA K., HUGGETT J.F., CHANG J.S., KIM L.U., BUSTIN S.A., JOHNSON M.A., ROOK G.A., ZUMLA A., 2005 – The implications of using an inappropriate reference gene for real-time reverse transcription PCR data normalization. Analytical Biochemistry 344, 141-143.
  • ERKENS T., VAN POUCKE M., VANDESOMPELE J., GOOSSENS K., VAN ZEVEREN A., PEELMAN L.J., 2006 – Development of a new set of reference genes for normalization of real-time RT-PCR data of porcine backfat and longissimus dorsi muscle and evaluation with PPARGC1A.BMC Biotechnology 6, 41.
  • ERNST C.W., VASKE D.A., LARSON R.G., WHITE M.E., ROTHSCHILD M.F., 1994 – Rapid communication. MspI restriction fragment length polymorphism at the swine MYF6 locus. Journal of Animal Science 72, 799.
  • GINZINGER D.G., 2002 – Gene quantification using real-time quantitative PCR an emerging technology hits the mainstream. Experimental Hematology 30, 503-512.
  • HUGGETT J., DHEDA K., BUSTIN S., ZUMLA A., 2005 – Real-time RT PCR normalization;strategies and considerations. Genes and Immunity 6, 279-284.
  • KITZMANN M., FERNANDEZ A., 2001 – Crosstalk between cell cycle regulators and the myogenic factor MyoD in skeletal myoblasts. Cellular and Molecular Life Sciences 58, 571-579.
  • LASSAR A.B., BUSKIN J.N., LOCKSHON D., DAVIS R.L., APONE S., HAUSCHKA S.D.,WEINTRAUB H., 1989 – MyoD is a sequence-specific DNA binding protein requiring a region of myc homology to bind to the muscle creatine kinase enhancer. Cell 58, 823-831.
  • MAAK S., NEUMANN K., SWALVE H.H., 2006 – Identification and analysis of putative regulatory sequences for the MYF5/MYF6 locus in different vertebrate species. Gene 66, 141-147.
  • MESIRES N.T., DOUMIT M.E., 2001 – Satellite cell proliferation and differentiation during postnatal growth of porcine skeletal muscle. American Journal of Physiology – Cell Physiology 282, 899-902.
  • NYGARD A.B., JORGENSEN C.B., CIRERA S., FREDHOLM M., 2007 – Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR. BMC Molecular Biology 8, 67.
  • OLSON E.N., BRENNAN T.J., CHAKRABORTY T., CHENG T.C., CSERJESI P., EDMONDSON D., JAMES G., LI L., 1991 – Molecular control of myogenesis antagonism between growth and differentiation. Molecular and Cellular Biochemistry 104, 7-13.
  • PFAFFL M.W., TICHOPAD A., PRGOMET C., NEUVIANS T.P., 2004 –Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—Excelbased tool using pair-wise correlations. Biotechnology Letters 26, 509-515.
  • PIERZCHAŁA M., PAREEK C.S., LISOWSKI P., URBAŃSKI P., GOLUCH D., KAMYCZEK M., ROŻYCKI M., COOPER R.G., KURYŁ J., 2011 – Evaluation based selection of reference genes for porcine hepatic tissue. Animal Science Papers and Reports 29, 53-63.
  • Pierzchała M., Pareek C.S., Urbański P., Goluch D., Kamyczek M., Różycki M., Smoczy Ński R.,Horba Ńczuk J.O., Kurył J., 2011 – Study of the differential transcription in liver of growth hormone receptor (GHR), insulin-like growth factors (IGF1, IGF2) and insulin-like growth factor receptor (IGF1R) genes at different postnatal developmental ages in ig breeds. Molecular Biology Reports DOI: 10.1007/s11033-011-1068-8.
  • ROPKA-MOLIK K., ECKERT R., PIÓRKOWSKA K., 2010 – The expression pattern of myogenic regulatory factors MyoD, Myf6 and Pax7 in postnatal porcine skeletal muscles. Gene Expression Patterns 11, 79-83.
  • RYU Y.C., KIM B.C., 2005 – The relationship between muscle fiber characteristics, postmortem metabolic rate, and meat quality of pig longissimus dorsi muscle. Meat Science 71, 351-357.
  • SELLIER P., 1998 – Genetics of Meat and Carcass Traits. In: The Genetics of the Pig (M.F. Rothschild and A. Ruvinsky, Eds.). CAB International, Wallingford, UK, 463-510.
  • STRATIL A., CEPICA S., 1999 – Three polymorphisms in the porcine myogenic factor 5 (MYF5)gene detected by PCR-RFLP. Animal Genetics 30, 79-80.
  • STÜRZENBAUM S.R., KILLE P., 200 – Control genes in quantitative molecular biological techniques the variability of invariance. Comparative Biochemistry and Physiology. Part B, 130,281-289.
  • SVOBODOVÁ K., BILEK K., KNOLL A., 2008 – Verification of reference genes for relative quantification of gene expression by real-time reverse transcription PCR in the pig. Journal of Applied Genetics 49, 263-265.
  • SZYNDLER-NĘDZA M., BLICHARSKI T., BAJDA Z., 2008 – Puławska pig – factors affecting the population size in 1932-2007. In Polish. Wiadomości Zootechniczne 4, 37-40.
  • THELLIN O., ZORZIT W., LAKAYE B., DE BORMAN B., COUMANS B., HENNEN G., GRISAR T., IGOUT A., HEINEN E., 1999 – Housekeeping genes as internal standards: use and limits. Journal of Biotechnology 75, 291-295.
  • TE PAS M.F., HARDERS F.L., SOUMILLION A., BORN L., BUIST W., MEUWISSEN T.H.E.,1999a – Genetic variation at the porcine MYF-5 gene locus. Lack of association with meat production traits. Mammalian Genome 10, 123-127
  • TE PAS M.F., SOUMILLION A., HARDERS F.L., VERBURG F.J., VAN DEN BOSCH T.J.,GALESLOOT P., MEUWISSEN T.H., 1999b – Influences of myogenin genotypes on birth weight,growth rate, carcass weight, backfat thickness and lean weight of pigs. Journal of Animal Science 77, 2352-2356.
  • TE PAS M.F.W., CAGNAZZO M., DE WIT A.A.C., PRIEM J., POOL M., DAVOLI R., 2005a –Muscle transcriptomes of Duroc and Pietrain pig breeds during prenatal formation of skeletal muscle tissue using microarray technology. Archiv für Tierzucht 48, 141-147.
  • TE PAS M.F.W., DE WIT A.A.C., PRIEM J., CAGNAZZO M., DAVOLI R., RUSSO V., POOL M.H., 2005b – Transcriptome expression profiles in prenatal pigs in relation to myogenesis. Journal of Muscle Research and Cell Motility 26, 157-165.
  • TE PAS M.F.W., HULSEGGE I., COSTER A., POOL M.H., HEUVEN H.H., JANSS L.L.G., 2007 – Biochemical pathways analysis of microarray results regulation of myogenesis in pigs. BMC Developmental Biology 7, 66.
  • URBANSKI P., KURYL J., 2004 – New SNPs in the coding and 5’ flanking regions of porcine MYOD1 (MYF3) and MYF5 genes. Journal of Applied Genetics 45, 325-329.
  • URBAŃSKI P., FLISIKOWSKI K., STARZYNSKI R., KURYŁ J., KAMYCZEK K., 2006 – A new SNP in the promoter region of the porcine MYF5 gene has no effect on its transcript level in m.longissimus dorsi. Journal of Applied Genetics 47, 59-61
  • VANDESOMPELE J., DE PRETER K., PATTYN F., POPPE B., VAN ROY N., DE PAEPE A.,SPELEMAN F., 2002 – Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 3, 34.
  • VERNER J., HUMPOLICEK P., KNOLL A., 2007 – Impact of MYOD family genes on pork traits in Large White and Landrace pigs. Journal of Animal Breeding and Genetics 124, 81-85.
  • VYKOUKALOVA Z., KNOLL A., DVORAK J., ROHRER G.A., CEPICA S., 2003 – Linkage and radiation hybrid mapping of the porcine MYF6 gene to chromosome 5. Animal Genetics 34, 238-240.
  • WARRINGTON J.A., NAIR A., MAHADEVAPPA M., TSYGANSKAYA M., 2000 – Comparison of human adult and fetal expression and identification of 535 housekeeping/maintenance genes.Physiological Genomics 2, 143-147.
  • WEINTRAUB H.R., DAVIS S., TAPSCOTT M., THAYER M., KRAUSE R., BENEZRA T.K.,BLACKWELL D., TURNER R., RUPP S., HOLLENBERG Y., LASSAR A., 1991 – The MyoD gene family Nodal point during specification of the muscle cell lineage. Science 251, 761-766.
  • WYSZYNSKA-KOKO J., KURYL J., 2004 – Porcine MYF6 gene sequence homology analysis and variation in the promoter region. Animal Biotechnology 15, 159-173.
  • WYSZYNSKA-KOKO J., PIERZCHALA M., FLISIKOWSKI K., KAMYCZEK M., ROZYCKI M., KURYL J., 2006 – Polymorphisms in coding and regulatory regions of the porcine MYF6 and MYOG genes and expression of the MYF6 gene in m. longissimus dorsi versus productive traits in pigs. Journal of Applied Genetics 47, 131-138.
  • ZHU L., LI X.W., SHUAI S.R., LI M.Z., CHEN L., GU Y.R., ZHANG K., 2010 – The phylogeny analysis of MyoG gene in different pig breeds. Interdisciplinary Sciences: Computational Life Sciences 2, 175-179.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-e24771ba-bcde-4d91-ab03-d66a688f5e2c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.