Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 19 | 4 |
Tytuł artykułu

Regulation of lncRNA expression

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Long non-coding RNAs (lncRNAs) are series of transcripts with important biological functions. Various diseases have been associated with aberrant expression of lncRNAs and the related dysregulation of mRNAs. In this review, we highlight the mechanisms of dynamic lncRNA expression. The chromatin state contributes to the low and specific expression of lncRNAs. The transcription of non-coding RNA genes is regulated by many core transcription factors applied to protein-coding genes. However, specific DNA sequences may allow their unsynchronized transcription with their location-associated mRNAs. Additionally, there are multiple mechanisms involved in the post-transcriptional regulation of lncRNAs. Among these, microRNAs might have indispensible regulatory effects on lncRNAs, based on recent discoveries.
Wydawca
-
Rocznik
Tom
19
Numer
4
Opis fizyczny
p.561-575,fig.,ref.
Twórcy
autor
  • Center for Drug Research and Development, Zhujiang Hospital, Southern Medical University, Zhujiang, China
autor
  • Center for Drug Research and Development, Zhujiang Hospital, Southern Medical University, Zhujiang, China
autor
  • Center for Drug Research and Development, Zhujiang Hospital, Southern Medical University, Zhujiang, China
autor
  • Center for Drug Research and Development, Zhujiang Hospital, Southern Medical University, Zhujiang, China
autor
  • Center for Drug Research and Development, Zhujiang Hospital, Southern Medical University, Zhujiang, China
autor
  • Center for Drug Research and Development, Zhujiang Hospital, Southern Medical University, Zhujiang, China
autor
  • Center for Drug Research and Development, Zhujiang Hospital, Southern Medical University, Zhujiang, China
autor
  • Center for Drug Research and Development, Zhujiang Hospital, Southern Medical University, Zhujiang, China
Bibliografia
  • 1. Yang, F., Zhang, L., Huo, X.S., Yuan, J.H., Xu, D., Yuan, S.X., Zhu, N., Zhou, W.P., Yang, G.S., Wang, Y.Z., Shang, J.L., Gao, C.F., Zhang, F.R., Wang, F. and Sun, S.H. Long noncoding RNA high expression in hepatocellular carcinoma facilitates tumor growth through enhancer of zeste homolog 2 in humans. Hepatology 54 (2011) 1679–1689.
  • 2. Zhang, Y., Yang, L. and Chen, L.L. Life without A tail: New formats of long noncoding RNAs. Int. J. Biochem Cell Biol. 2013. DOI: 10.1016/j.biocel.2013.10.009.
  • 3. Martianov, I., Ramadass, A., Serra Barros, A., Chow, N. and Akoulitchev, A. Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature 445 (2007) 666–670.
  • 4. Uhler, J.P., Hertel, C. and Svejstrup, J.Q. A role for noncoding transcription in activation of the yeast PHO5 gene. Proc. Natl. Acad. Sci. USA 104 (2007) 8011–8816.
  • 5. Martens, J.A., Laprade, L. and Winston, F. Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene. Nature 429 (2004) 571–574.
  • 6. Rinn, J.L., Kertesz, M, Wang, J.K., Squazzo, S.L., Xu, X, Brugmann, S.A., Goodnough, L.H., Helms, J.A., Farnham, P.J., Segal, E. and Chang, H.Y. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell. 129 (2007) 1311–1323.
  • 7. Sleutels, F., Zwart, R. and Barlow, D.P. The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 415 (2002) 810–813.
  • 8. Martianov, I., Ramadass, A., Serra Barros, A., Chow, N. and Akoulitchev, A. Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature 445 (2007) 666–670.
  • 9. Yang, F., Zhang, L., Huo, X.S., Yuan, J.H., Xu, D., Yuan, S.X., Zhu, N., Zhou, W.P., Yang, G.S., Wang, Y.Z., Shang, J.L., Gao, C.F., Zhang, F.R., Wang, F. and Sun, S.H. Long noncoding RNA high expression in hepatocellular carcinoma facilitates tumor growth through enhancer of zeste homolog 2 in humans. Hepatology 54 (2011) 1679–1689.
  • 10. Wan, G., Hu, X., Liu, Y., Han, C., Sood, A.K., Calin, G.A., Zhang, X. and Lu, X. A novel non-coding RNA lncRNA-JADE connects DNA damage signalling to histone H4 acetylation. EMBO J. 32 (2013) 2833–2847.
  • 11. Gao, L., Mai, A., Li, X., Lai, Y., Zheng, J., Yang, Q., Wu, J., Nan, A., Ye, S. and Jiang, Y. LncRNA-DQ786227-mediated cell malignant transformation induced by benzo(a)pyrene. Toxicol Lett. 223 (2013) 205–210.
  • 12. Song, G., Shen, Y., Zhu, J., Liu, H., Liu, M., Shen, Y.Q., Zhu, S., Kong, X., Yu, Z. and Qian, L. Integrated analysis of dysregulated lncRNA expression in fetal cardiac tissues with ventricular septal defect. PLoS One 8 (2013) e77492.
  • 13. Sui, W., Lin, H., Peng, W., Huang, Y., Chen, J., Zhang, Y. and Dai, Y. Molecular dysfunctions in acute rejection after renal transplantation revealed by integrated analysis of transcription factor, microRNA and long noncoding RNA. Genomics 102 (2013) 310–322.
  • 14. Ravasi, T., Suzuki, H., Pang, K.C., Katayama, S., Furuno, M., Okunishi, R., Fukuda, S., Ru, K., Frith, M.C., Gongora, M.M., Grimmond, S.M., Hume, D.A., Hayashizaki, Y. and Mattick, J.S. Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. Genome Res. 16 (2006) 11–19.
  • 15. Hansen, T.B., Wiklund, E.D., Bramsen, J.B., Villadsen, S.B., Statham, A.L., Clark, S.J. and Kjems, J. miRNA-dependent gene silencing involving Ago2- mediated cleavage of a circular antisense RNA. EMBO J. 30 (2011) 4414–4422.
  • 16. Yang, H., Zhong, Y., Xie, H., Lai, X., Xu, M., Nie, Y., Liu, S. and Wan, Y.J. Induction of the liver cancer-down-regulated long noncoding RNA uc002mbe.2 mediates trichostatin-induced apoptosis of liver cancer cells. Biochem Pharmacol. 85 (2013) 1761–1769.
  • 17. Yang, F., Huo, X.S., Yuan, S.X., Zhang, L., Zhou, W.P., Wang, F. and Sun, S.H. Repression of the long noncoding RNA-LET by histone deacetylase 3 contributes to hypoxia-mediated metastasis. Mol. Cell. 49 (2013) 1083–1096.
  • 18. Cawley, S., Bekiranov, S., Ng, H.H., Kapranov, P., Sekinger, E.A., Kampa, D., Piccolboni, A., Sementchenko, V., Cheng, J., Williams, A.J., Wheeler, R., Wong, B., Drenkow, J., Yamanaka, M., Patel, S., Brubaker, S., Tammana, H., Helt, G., Struhl, K. and Gingeras, T.R.Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116 (2004) 499–509.
  • 19. Clark, M.B., Johnston, R.L., Inostroza-Ponta, M., Fox, A.H., Fortini, E., Moscato, P., Dinger, M.E. and Mattick, J.S. Genome-wide analysis of long noncoding RNA stability. Genome Res. 22 (2012) 885–898.
  • 20. Diederichs, S. The four dimensions of noncoding RNA conservation. Trends Genet. 30 (2014) 121–123.
  • 21. Plath, K., Mlynarczyk-Evans, S,, Nusinow, D.A. and Panning, B. Xist RNA and the mechanism of X chromosome inactivation. Annu. Rev. Genet. 36 (2002) 233–278.
  • 22. Guttman, M., Amit, I., Garber, M., French, C., Lin, M.F., Feldser, D., Huarte, M., Zuk, O., Carey, B.W., Cassady, J.P., Cabili, M.N., Jaenisch, R., Mikkelsen, T.S., Jacks, T.,Hacohen, N., Bernstein, B.E., Kellis, M., Regev, A., Rinn, J.L. and Lander, E.S. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458 (2009) 223–227.
  • 23. Derrien, T., Johnson, R., Bussotti, G., Tanzer, A., Djebali, S., Tilgner, H., Guernec, G., Martin, D., Merkel, A., Knowles, D.G., Lagarde, J., Veeravalli, L., Ruan, X., Ruan, Y., Lassmann, T., Carninci, P., Brown, J.B., Lipovich, L., Gonzalez, J.M., Thomas, M., Davis, C.A., Shiekhattar, R., Gingeras, T.R., Hubbard, T.J., Notredame, C., Harrow, J. and Guigó, R.The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 22 (2012) 1775–1789.
  • 24. Carninci, P., Kasukawa, T., Katayama, S., Gough, J., Frith, M.C., Maeda, N, Oyama, R., Ravasi, T., Lenhard, B., Wells, C., Kodzius, R., Shimokawa, K., Bajic, V.B., Brenner, S.E., Batalov, S., Forrest, A.R., Zavolan, M., Davis, M.J., Wilming, L.G., Aidinis, V., Allen, J.E., Ambesi-Impiombato, A., Apweiler, R., Aturaliya, R.N., Bailey, T.L.,Bansal, M., Baxter, L., Beisel, K.W., Bersano, T., Bono, H., Chalk, A.M., Chiu, K.P., Choudhary, V., Christoffels, A., Clutterbuck, D.R., Crowe, M.L., Dalla, E., Dalrymple, B.P., de Bono, B., Della Gatta, G., di Bernardo, D., Down, T., Engstrom, P., Fagiolini, M., Faulkner, G., Fletcher, C.F., Fukushima, T., Furuno, M., Futaki, S., Gariboldi, M., Georgii-Hemming, P., Gingeras, T.R., Gojobori, T., Green, R.E., Gustincich, S., Harbers, M., Hayashi, Y., Hensch, T.K., Hirokawa, N., Hill, D., Huminiecki, L., Iacono, M., Ikeo, K., Iwama, A., Ishikawa, T., Jakt, M., Kanapin, A., Katoh, M., Kawasawa, Y., Kelso, J., Kitamura, H., Kitano, H., Kollias, G., Krishnan, S.P., Kruger, A., Kummerfeld, S.K., Kurochkin, I.V., Lareau, L.F., Lazarevic, D., Lipovich, L., Liu, J., Liuni, S., McWilliam, S., Madan Babu, M., Madera, M., Marchionni, L., Matsuda, H., Matsuzawa, S., Miki, H., Mignone, F., Miyake, S., Morris, K., Mottagui-Tabar, S., Mulder, N., Nakano, N., Nakauchi, H., Ng, P., Nilsson, R., Nishiguchi, S., Nishikawa, S., Nori, F., Ohara, O., Okazaki, Y., Orlando, V., Pang, K.C., Pavan, W.J., Pavesi, G., Pesole, G., Petrovsky, N., Piazza, S., Reed, J., Reid, J.F., Ring, B.Z., Ringwald, M., Rost, B., Ruan, Y., Salzberg, S.L., Sandelin, A., Schneider, C., Schönbach, C., Sekiguchi, K., Semple, C.A., Seno, S., Sessa, L., Sheng, Y., Shibata, Y., Shimada, H., Shimada, K., Silva, D., Sinclair, B., Sperling, S., Stupka, E., Sugiura, K, Sultana, R., Takenaka, Y., Taki, K., Tammoja, K., Tan, S.L., Tang, S., Taylor, M.S., Tegner, J.,Teichmann, S.A., Ueda, H.R., van Nimwegen, E., Verardo, R., Wei, C.L., Yagi, K., Yamanishi, H., Zabarovsky, E., Zhu, S., Zimmer, A., Hide, W., Bult, C., Grimmond, S.M., Teasdale, R.D., Liu, E.T., Brusic, V., Quackenbush, J., Wahlestedt, C., Mattick, J.S., Hume, D.A., Kai, C., Sasaki, D., Tomaru, Y., Fukuda, S., Kanamori-Katayama, M., Suzuki, M., Aoki, J., Arakawa, T., Iida, J., Imamura, K., Itoh, M., Kato, T., Kawaji, H., Kawagashira, N., Kawashima, T., Kojima, M., Kondo, S., Konno, H., Nakano, K., Ninomiya, N., Nishio, T., Okada, M., Plessy, C., Shibata, K., Shiraki, T., Suzuki, S., Tagami, M., Waki, K., Watahiki, A., Okamura-Oho, Y., Suzuki, H., Kawai, J., Hayashizaki, Y.; FANTOM Consortium; RIKEN Genome Exploration Research Group and Genome Science Group (Genome Network Project Core Group).The transcriptional landscape of the mammalian genome. Science 309 (2005) 1559–1563.
  • 25. Mohammad, F., Pandey, G.K., Mondal. T., Enroth, S., Redrup, L., Gyllensten, U. and Kanduri, C. Long noncoding RNA-mediated maintenance of DNA methylation and transcriptional gene silencing. Development 139 (2012) 2792–2803.
  • 26. Chen, Z.J. and Pikaard, C.S. Epigenetic silencing of RNA polymerase I transcription: a role for DNA methylation and histone modification in nucleolar dominance. Genes Dev. 11 (1997) 2124–2136.
  • 27. Selker, E.U. Trichostatin A causes selective loss of DNA methylation in Neurospora. Proc. Natl. Acad. Sci. USA 95 (1998) 9430–9435.
  • 28. Braconi, C., Kogure, T., Valeri, N., Huang, N., Nuovo, G., Costinean, S., Negrini, M., Miotto, E., Croce, C.M. and Patel, T. microRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer. Oncogene 30 (2011) 4750–4756.
  • 29. Amort, T., Soulière, M.F., Wille, A., Jia, X.Y., Fiegl, H., Wörle, H., Micura, R. and Lusser, A. Long non-coding RNAs as targets for cytosine methylation. RNA Biol. 10 (2013) 1003–1008.
  • 30. Yang, H., Zhong, Y., Xie, H., Lai, X., Xu, M., Nie, Y., Liu, S. and Wan, Y.J. Induction of the liver cancer-down-regulated long noncoding RNA uc002mbe.2 mediates trichostatin-induced apoptosis of liver cancer cells. Biochem Pharmacol. 85 (2013) 1761–1769.
  • 31. Saxonov, S., Berg, P. and Brutlag, D.L. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc. Natl. Acad. Sci. USA 103 (2006) 1412–1417.
  • 32. Elango, N. and Yi, S.V. DNA methylation and structural and functional bimodality of vertebrate promoters. Mol. Biol. Evol. 25 (2008) 1602–1608.
  • 33. Mikkelsen, T.S., Ku, M., Jaffe, D.B., Issac, B., Lieberman, E., Giannoukos, G., Alvarez, P., Brockman, W., Kim, T.K., Koche, R.P., Lee, W., Mendenhall, E., O’Donovan, A., Presser, A., Russ, C., Xie, X., Meissner, A., Wernig, M., Jaenisch, R., Nusbaum, C., Lander, E.S. and Bernstein, B.E. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448 (2007) 553–560.
  • 34. Dinger, M.E., Amaral, P.P., Mercer, T.R., Pang, K.C., Bruce, S.J., Gardiner, B.B., Askarian-Amiri, M.E., Ru, K., Soldà, G., Simons, C., Sunkin, S.M., Crowe, M.L.,Grimmond, S.M., Perkins, A.C. and Mattick, J.S. Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res. 18 (2008) 1433–1445.
  • 35. Khalil, A.M., Guttman, M., Huarte, M., Garber, M., Raj, A., Rivea Morales, D., Thomas, K., Presser, A., Bernstein, B.E., van, Oudenaarden, A., Regev, A., Lander, E.S. and Rinn, J.L. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl. Acad. Sci. USA 106 (2009) 11667–11672.
  • 36. Dharap, A., Nakka, V.P., and Vemuganti, R. Effect of focal ischemia on long noncoding RNAs. Stroke 43 (2012) 2800–2802.
  • 37. Uesaka, M., Nishimura, O., Go, Y., Nakashima, K., Agata, K., Imamura, T. Bidirectional promoters are the major source of gene activation-associated non-coding RNAs in mammals. BMC Genomics 15 (2014). DOI: 10.1186/1471-2164-15-35.
  • 38. Engstrom, P.G., Suzuki, H., Ninomiya, N., Akalin, A., Sessa, L., Lavorgna, G., Brozzi, A., Luzi, L., Tan, S.L., Yang, L., Kunarso, G., Ng, E.L., Batalov, S., Wahlestedt, C.,Kai, C., Kawai, J., Carninci, P., Hayashizaki, Y., Wells, C., Bajic, V.B., Orlando, V., Reid, J.F., Lenhard, B., Lipovich, L. Complex Loci in human and mouse genomes. PLoS Genet. 2 (2006) e47.
  • 39. Wang, Y., Pang, W.J., Wei, N., Xiong, Y., Wu, W.J., Zhao, C.Z., Shen, Q.W. and Yang, G.S. Identification, stability and expression of Sirt1 antisense long non-coding RNA. Gene 539 (2014) 117–124.
  • 40. Yoon, J.H., Abdelmohsen, K. and Gorospe, M. Posttranscriptional gene regulation by long noncoding RNA. J. Mol. Biol. 425 (2013) 3723–3730.
  • 41. Wilusz, J.E., JnBaptiste, C.K., Lu, L.Y., Kuhn, C.D., Joshua-Tor, L. and Sharp, P.A. A triple helix stabilizes the 3’ ends of long noncoding RNAs that lack poly(A) tails. Genes Dev. 26 (2012) 2392–2407.
  • 42. Brown, J.A., Valenstein, M.L., Yario, T.A., Tycowski, K.T. and Steitz, J.A. Formation of triple-helical structures by the 3’-end sequences of MALAT1 and MENβnoncoding RNAs. Proc. Natl. Acad. Sci. USA 109 (2012) 19202–19207.
  • 43. Yoon, J.H., Abdelmohsen, K., Srikantan, S., Yang, X., Martindale, J.L., De, S., Huarte, M., Zhan, M., Becker, K.G. and Gorospe, M. LincRNA-p21 suppresses target mRNA translation. Mol. Cell. 47 (2012) 648–655.
  • 44. Jalali, S., Bhartiya, D., Lalwani, M.K., Sivasubbu, S. and Scaria, V. Systematic transcriptome wide analysis of lncRNA-miRNA interactions. PLoS One 8 (2013) e53823.
  • 45. Chiyomaru, T., Fukuhara, S., Saini, S., Majid, S., Deng, G., Shahryary, V., Chang, I., Tanaka, Y., Enokida, H., Nakagawa, M., Dahiya, R. and Yamamura, S. Long non-coding RNA HOTAIR is targeted and regulated by miR-141 in human cancer cells. J. Biol. Chem. 18 (2014) 12550–12565.
  • 46. Yoon, J.H., Abdelmohsen K., Kim J., Yang X., Martindale J.L., TominagaYamanaka K., White E.J., Orjalo A.V., Rinn J.L., Kreft S.G., Wilson G.M. and Gorospe M. Scaffold function of long non-coding RNA HOTAIR in protein ubiquitination. Nat. Commun. 2013. DOI: 10.1038/ncomms3939.
  • 47. Han, Y., Liu, Y., Zhang, H., Wang, T., Diao, R., Jiang, Z., Gui, Y. and Cai, Z. Hsa-miR-125b suppresses bladder cancer development by down-regulating oncogene SIRT7 and oncogenic long noncoding RNA MALAT1. FEBS Lett. 587 (2013) 3875–3882.
  • 48. Huang, J., Zhou, N., Watabe, K., Lu, Z., Wu, F., Xu, M. and Mo, Y.Y. Long non-coding RNA UCA1 promotes breast tumor growth by suppression of p27 (Kip1). Cell Death Dis. 5 (2014) e1008.
  • 49. Mercer, T.R. and Mattick, J.S. Structure and function of long noncoding RNAs in epigenetic regulation. Nat. Struct. Mol. Biol. 20 (2013) 300–307.
  • 50. Yang, Y., Zhou, X. and Jin, Y. ADAR-mediated RNA editing in non-coding RNA sequences. Sci. China Life Sci. 56 (2013) 944–952.
  • 51. Cantara, W.A., Crain, P.F., Rozenski, J., McCloskey, J.A., Harris, K.A., Zhang, X., Vendeix, F.A., Fabris, D. and Agris, P.F. The RNA Modification Database, RNAMDB: 2011 update. Nucleic Acids Res. 39 (2011)(Database issue) D195–201.
  • 52. Wang, J., Liu, X., Wu, H., Ni, P., Gu, Z., Qiao, Y., Chen, N., Sun, F. and Fan, Q. CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res. 38 (2010) 5366–5383.
  • 53. Leucci, E., Patella, F., Waage, J., Holmstrøm, K., Lindow, M., Porse, B., Kauppinen, S. and Lund, A.H. microRNA-9 targets the long non-coding RNA MALAT1 for degradation in the nucleus. Sci. Rep. 3 (2013). DOI: 10.1038/srep02535.
  • 54. Chiyomaru, T., Yamamura, S., Fukuhara, S., Yoshino, H., Kinoshita, T., Majid, S., Saini, S., Chang, I., Tanaka, Y., Enokida, H., Seki, N., Nakagawa, M. and Dahiya, R. Genistein inhibits prostate cancer cell growth by targeting miR-34a and oncogenic HOTAIR. PLoS One 8 (2013) e70372.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-df901327-7c2e-4a01-9f83-49450c73c16b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.