Warianty tytułu
Języki publikacji
Abstrakty
Changes in precipitation patterns and the deposition of atmospheric nitrogen (N) increase the possibility of altering soil carbon (C):N:phosphorus (P) stoichiometry through their effects on soil C and nutrient dynamics, especially in water- and N-limited ecosystems. We conducted separate 2-year watering and N addition experiments, and examined soil C:N:P stoichiometry, relative growth rate, and leaf N resorption traits of Glycyrrhiza uralensis Fisch in a desert steppe of northwestern China. Our objectives were to determine how soil C:N:P stoichiometry responded to climate change, and its indications for plant growth and N resorption. The results showed that additional water increased N loss and thus decreased N availability, resulting in high N resorption from senescing leaves of G. uralensis. N addition increased N availability, consequently reducing plant N dependence on leaf resorption. High relative growth rates occurred with intermediate N:P and C:N ratios, while high N resorption occurred with a low N:P ratio but a high C:N ratio. Our results indicate that soil C:N:P stoichiometry also could be a good indicator of N limitation for desert steppe species. Altered soil C:N:P stoichiometry affects the N strategy of plants, and will be expected to further influence the structure and function of the desert steppe community in the near future.
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.241-254,fig.,ref.
Twórcy
autor
- Institute of Environmental Engineering, Ningxia University, No. 489 Helanshan West Road, Yinchuan 750021, China
autor
- College of Resources and Environment, Ningxia University, No. 539 Helanshan West Road, Yinchuan 750021, China
autor
- Institute of Environmental Engineering, Ningxia University, No. 489 Helanshan West Road, Yinchuan 750021, China
autor
- Institute of Environmental Engineering, Ningxia University, No. 489 Helanshan West Road, Yinchuan 750021, China
autor
- Department of Ecosystem Science and Management, The Pennsylvania State University, 116 ASI Building, University Park, PA 16802, USA
Bibliografia
- Aerts R. 1996 — Nutrient resorption from senescing leaves of perennials: Are there general patterns? — J. Ecol. 84: 597–608.
- Allison S.D., Gartner T.B., Mack M.C., McGuire K., Treseder K. 2010 — Nitrogen alters carbon dynamics during early succession in boreal forest — Soil Biol. Biochem. 42: 1157–1164.
- Andresen L.C., Michelsen A., Ambus P., Beier C. 2010 — Belowground heathland responses after 2 years of combined warming, elevated CO₂ and summer drought — Biogeochemistry, 101: 27–42.
- Arnone J.A., Verburg P.S.J., Johnson D.W., Larsen J.D., Jasoni R.L., Lucchesi A.J., Batts C.M., von Nagy C., Coulombe W.G., Schorran D.E., Buck P.E., Braswell B.H., Coleman J.S., Sherry R.A., Wallace L.L., Luo Y.Q., Schimel D.S. 2008 — Prolonged suppression of ecosystem carbon dioxide uptake after an anomalously warm year — Nature, 455: 383–386.
- Austin A.T., Vitousek P.M. 2012 — Introduction to a virtual special issue on ecological stoichiometry and global change — New Phytol. 196: 649–651.
- Bai Y.F., Wu J.G., Clark C.M., Naeem S., Pan Q.M., Huang J.H., Zhang L.X., Han X.G. 2010 — Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning, evidence from Inner Mongolia Grasslands — Global Change Biol. 16: 358–372.
- Balmford A., Bruner A., Cooper P., Costanza R., Farber S., Green R.E., Jenkins M., Jefferiss P., Jessamy V., Madden J., Munro K., Myers N., Naeem S., Paavola J., Rayment M., Rosendo S., Roughgarden J., Trumper K., Turner R.K. 2002 — Ecology-Economic reasons for conserving wild nature — Science, 297: 950–953.
- Bobbink R., Hornung M., Roelofs J.G.M. 1998 — The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation — J. Ecol. 86: 717–738.
- Bragazza L., Tahvanainen T., Kutnar L., Rydin H., Limpens J., Hajek M., Grosvernier P., Hajek T., Hajkova P., Hansen I., Iacumin P., Gerdol R. 2004 — Nutritional constraints in ombrotrophic Sphagnum plants under increasing atmospheric nitrogen deposition in Europe — New Phytol. 163: 609–616.
- Bui E.N., Henderson B.L. 2013 — C:N:P stoichiometry in Australian soils with respect to vegetation and environmental factors — Plant Soil, 373: 553–568.
- Cleveland C.C., Liptzin D. 2007 — C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? — Biogeochemistry, 85: 235–252.
- Cui Q.A., Lu X.T., Wang Q.B., Han X.G. 2010 — Nitrogen fertilization and fire act independently on foliar stoichiometry in a temperate steppe — Plant Soil, 334: 209–219.
- Dalal R.C., Chan K.Y. 2001 — Soil organic matter in rainfed cropping systems of the Australian cereal belt — Aust. J. Soil Res. 39: 435–464.
- Dijkstra F.A., Pendall E., Morgan J.A., Blumenthal D.M., Carrillo Y., LeCain D.R., Follett R. F., Williams D.G. 2012 — Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland — New Phytol. 196: 807–815.
- Drenovsky R.E., James J.J., Richards J.H. 2010 — Variation in nutrient resorption by desert shrubs — J. Arid Environ. 74: 1564–1568.
- Drenovsky R.E., Khasanova A., James J.J. 2012 — Trait convergence and plasticity among native and invasive species in resource-poor environments — Am. J. Bot. 99: 629–639.
- Duan L., Hao J.M., Xie S.D., Zhou Z.P. 2002 — Estimating critical loads of sulfur and nitrogen for Chinese soils by steady state method — Environ. Sci. 23: 7–12 (in Chinese, English summary).
- Easterling D.R., Meehl G.A., Parmesan C., Changnon S.A., Karl T.R., Mearns L.O. 2000 — Climate extremes: Observations, modeling, and impacts — Science, 289: 2068–2074.
- Elser J.J., Andersen T., Baron J.S., Bergstrom A.K., Jansson M., Kyle M., Nydick K.R., Steger L., Hessen D.O. 2009 — Shifts in lake N:P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition — Science, 326: 835–837.
- Galloway J.N., Aber J.D., Erisman J.W., Seitzinger S.P., Howarth R.W., Cowling E.B., Cosby B.J. 2003 — The nitrogen cascade — Bioscience, 53: 341–356.
- Galloway J.N., Cowling E.B. 2002 — Reactive nitrogen and the world: 200 years of change — Ambio, 31: 64–71.
- Groisman P.Y., Knight R.W., Easterling D.R., Karl T.R., Hegerl G.C., Razuvaev V.A.N. 2005 — Trends in intense precipitation in the climate record — J. Climate, 18: 1326–1350.
- He N.P., Chen Q.S., Han X.G., Yu G.R., Li L.H. 2012 — Warming and increased precipitation individually influence soil carbon sequestration of Inner Mongolian grasslands, China — Agr. Ecosyst. Environ. 158: 184–191.
- Heimann M., Reichstein M. 2008 — Terrestrial ecosystem carbon dynamics and climate feedbacks — Nature, 451: 289–292.
- Huang J.Y., Yu H.L., Li L.H., Yuan Z.Y., Bartels S. 2009 — Water supply changes N and P conservation in a perennial grass Leymus chinensis — J. Integr. Plant Biol. 51: 1050–1056.
- Huang J.Y., Zhu X.G., Yuan Z.Y., Song S.H., Li X., Li L.H. 2008 — Changes in nitrogen resorption traits of six temperate grassland species along a multi-level N addition gradient — Plant Soil, 306: 149–158.
- IPCC 2007 — Climate Change 2007: the physical science basis — Cambridge University Press, Cambridge, UK and New York.
- Khasanova A., James J.J., Drenovsky R.E. 2013 — Impacts of drought on plant water relations and nitrogen nutrition in dryland perennial grasses — Plant Soil, 372: 541–552.
- Li Y.L., Jing C., Mao W., Cui D., Wang X.Y., Zhao X.Y. 2014 — N and P resorption in a pioneer shrub (Artemisia halodendron) inhabiting severely desertified lands of Northern China — J. Arid Land, 6: 174–185.
- Lu F.M., Lu X.T., Liu W., Han X., Zhang G.M., Kong D.L., Han X.G. 2011 — Carbon and nitrogen storage in plant and soil as related to nitrogen and water amendment in a temperate steppe of northern China — Biol. Fert. Soils, 47: 187–196.
- Lu X.T., Reed S., Yu Q., He N.P., Wang Z.W., Han X.G. 2013 — Convergent responses of nitrogen and phosphorus resorption to nitrogen inputs in a semiarid grassland — Global Change Biol. 19: 2775–2784.
- McCulley R.L., Burke I.C., Lauenroth W.K. 2009 — Conservation of nitrogen increases with pre cipitation across a major grassland gradient in the Central Great Plains of North America — Oecologia, 159: 571–581.
- Menge D.N.L., Field C.B. 2007 — Simulated global changes alter phosphorus demand in annual grassland — Global Change Biol. 13: 2582–2591.
- Niu S.L., Wu M.Y., Han Y., Xia J.Y., Zhang Z., Yang H.J., Wan S.Q. 2010 — Nitrogen effects on net ecosystem carbon exchange in a temperate steppe — Global Change Biol. 16: 144–155.
- Penuelas J., Poulter B., Sardans J., Ciais P., van der Velde M., Bopp L., Boucher O., Godderis Y., Hinsinger P., Llusia J., Nardin E., Vicca S., Obersteiner M., Janssens I.A. 2013 — Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe — Nat. Commun. 4: 2934.
- Penuelas J., Sardans J., Rivas-Ubach A., Janssens I.A. 2012 — The human-induced imbalance between C, N and P in Earth's life system — Global Change Biol. 18: 3–6.
- Perring M.P., Hedin L.O., Levin S.A., McGroddy M., de Mazancourt C. 2008 — Increased plant growth from nitrogen addition should conserve phosphorus in terrestrial ecosystems — P. Natl. Acad. Sci. USA. 105: 1971–1976.
- Piccolo M.C., Neill C., Cerri C.C. 1994 — Net nitrogen mineralization and net nitrification along a tropical Forest-to-Pasture chronosequence — Plant Soil, 162: 61–70.
- Reed S.C., Townsend A.R., Davidson E.A., Cleveland C.C. 2012 — Stoichiometric patterns in foliar nutrient resorption across multiple scales — New Phytol. 196: 173–180.
- Rejmankova E. 2005 — Nutrient resorption in wetland macrophytes: comparison across several regions of different nutrient status — New Phytol. 167: 471–482.
- Sardans J., Penuelas J., Ogaya R. 2008 — Drought — induced changes in C and N stoichiometry in a Quercus ilex Mediterranean forest — Forest Sci. 54: 513–522.
- Sardans J., Rivas-Ubach A., Penuelas J. 2012 — The C:N:P stoichiometry of organisms and ecosystems in a changing world: A review and perspectives — Perspect. Plant Ecol. 14: 33–47.
- Shi Y.F., Shen Y.P., Hu R.J. 2002 — Primary study on signal, impacts and foreground of climatic shift from warm-dry to warm-humid in northwest China — Journal of Glaciology and Geocryology, 24: 219–226 (in Chinese, English summary).
- Sitters J., Edwards P.J., Venterink H.O. 2013 — Increases of soil C, N, and P pools along an Acacia tree sensity gradient and their effects on trees and grasses — Ecosystems, 16: 347–357.
- Steffens M., Kolbl A., Totsche K.U., Kogel-Knabner I. 2008 — Grazing effects on soil chemical and physical properties in a semiarid steppe of Inner Mongolia (PR China) — Geoderma, 143: 63–72.
- Sterner R.W., Elser J.J. 2002 — Ecological stoichiometry: the biology of elements from molecules to the biosphere — Princeton University Press, Princeton, NJ, USA.
- Throop H.L. 2005 — Nitrogen deposition and herbivory affect biomass production and allocation in an annual plant — Oikos, 111: 91–100.
- Tian H.Q., Chen G.S., Zhang C., Melillo J.M., Hall C.A.S. 2010 — Pattern and variation of C:N:P ratios in China's soils: a synthesis of observational data — Biogeochemistry, 98: 139–151.
- Urabe J., Naeem S., Raubenheimer D., Elser J.J. 2010 — The evolution of biological stoichiometry under global change — Oikos, 119: 737–740.
- van Heerwaarden L. M., Toet S., Aerts R. 2003 — Nitrogen and phosphorus resorption efficiency and proficiency in six sub-arctic bog species after 4 years of nitrogen fertilization — J. Ecol. 91: 1060–1070.
- Vitousek P.M., Mooney H.A., Lubchenco J., Melillo J.M. 1997 — Human domination of Earth's ecosystems — Science, 277: 494–499.
- Wang M., Murphy M.T., Moore T.R. 2014 — Nutrient resorption of two evergreen shrubs in response to long-term fertilization in a bog — Oecologia, 174: 365–377.
- Wang Y., Cao M.K., Tao B., Li K.R. 2006 — [The characteristics of spatio-temporal patterns in precipitation in China under the background of global climate change] — Geographical Research, 25: 1031–1041 (in Chinese, English summary).
- Wen H.Y., Niu D.C., Fu H., Kang J. 2013 — Experimental investigation on soil carbon, nitrogen, and their components under grazing and livestock exclusion in steppe and desert steppe grasslands, Northwestern China — Environ. Earth Sci. 70: 3131–3141.
- Wright I.J., Westoby M. 2003 — Nutrient concentration, resorption and lifespan: leaf traits of Australian sclerophyll species — Funct. Ecol. 17: 10–19.
- Xu D.M., Xu X.Z., Xie Y.Z., Wang K. 2012 — Dynamics of sandy desertification and detection of Sandy Land/Steppe boundary: vegetation and soil properties — Pol. J. Ecol. 60: 251–263.
- Yang Y.H., Fang J.Y., Ji C.J., Datta A., Li P., Ma W.H., Mohammat A., Shen H.H., Hu H.F., Knapp B.O., Smith P. 2014 — Stoichiometric shifts in surface soils over broad geographical scales: evidence from China's grasslands — Global Ecol. Biogeogr. 23: 947–955.
- Yu Q., Wu H.H., He N.P., Lu X.T., Wang Z.P., Elser J.J., Wu J.G., Han X.G. 2012 — Testing the growth rate hypothesis in vascular plants with above- and below-ground biomass — Plos One, 7: e32162
- Yuan Z.Y., Chen H.Y.H. 2009a — Global-scale patterns of nutrient resorption associated with latitude, temperature and precipitation — Global Ecol. Biogeogr. 18: 11–18.
- Yuan Z.Y., Chen H.Y.H. 2009b — Global trends in senesced-leaf nitrogen and phosphorus — Global Ecol. Biogeogr. 18: 532–542.
- Yuan Z.Y., Li L.H., Han X.G., Chen S.P., Wang Z.W., Chen Q.S., Bai W.M. 2006 — Nitrogen response efficiency increased monotonically with decreasing soil resource availability: a case study from a semiarid grassland in northern China — Oecologia, 148: 564–572.
- Zhang G.H., Li Z.C., Song Y., Wu Y.L., Wang X.L. 2011 — Spatial patterns of change trend in rainfall of China and the role of East Asia summer monsoon — Arid Land Geography, 34: 34–42 (in Chinese, English summary).
- Zheng S.X., Ren H.Y., Li W.H., Lan Z.C. 2012 — Scale-dependent effects of grazing on plant C: N: P stoichiometry and linkages to ecosystem functioning in the Inner Mongolia grassland — Plos One, 7: e51750.
- Zuo X.A., Zhao X.Y., Zhao H.L., Guo Y.R., Zhang T.H., Cui J.Y. 2010 — Spatial pattern and heterogeneity of soil organic carbon and nitrogen in sand dunes related to vegetation change and geomorphic position in Horqin Sandy Land, Northern China — Environ. Monit. Assess. 164: 29–42.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-df48833a-3624-4a19-bbf5-b0b4f6a46232