Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 78 | 2 |
Tytuł artykułu

The relationship between alpha burst activity and the default mode network

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Alpha rhythm, described by Hans Berger, is mainly recorded from the occipital cortex (OCC) of relaxed subjects with their eyes closed. Early studies indicated the thalamo‑cortical circuit as the origin of alpha rhythm. Recent works suggest an additional relationship between alpha rhythm and the Default Mode Network (DMN). We simultaneously recorded electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) signals in 36 young males asked to alternately close and open their eyes in 30‑s blocks. Using an EEG source channel montage (the recorded signal was interpolated to designated source positions corresponding to certain brain regions) we found an alpha rhythm sub‑activity composed of its intrinsic events, called alpha bursting segments (ABS). More ABS were observed on source channels related to the DMN than those located over the OCC. Similarly, both the beamformer source analysis and fMRI indicated that the specific ABS activity detected on the posterior cingulate cortex/precuneus (PCC) source channel was less related to the OCC than to the DMN source channels. The fMRI analysis performed using the PCC‑ABS as a general linear model regressor indicated an increased blood oxygenation level‑dependent signal change in DMN nodes – precuneus and prefrontal cortex. These results confirm the OCC source of alpha activity and additional specific sources of ABS in the DMN.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
78
Numer
2
Opis fizyczny
p.92-113,fig.,ref.
Twórcy
autor
  • Bioimaging Research Center, World Hearing Center of the Institute of Physiology and Pathology of Hearing, Warsaw/Kajetany, Poland
autor
  • Department of Neurophysiology, Nencki Institute of Experimental Biology, Polish Academy of Science, Warsaw, Poland
autor
  • Bioimaging Research Center, World Hearing Center of the Institute of Physiology and Pathology of Hearing, Warsaw/Kajetany, Poland
autor
  • Bioimaging Research Center, World Hearing Center of the Institute of Physiology and Pathology of Hearing, Warsaw/Kajetany, Poland
  • Bioimaging Research Center, World Hearing Center of the Institute of Physiology and Pathology of Hearing, Warsaw/Kajetany, Poland
autor
  • Bioimaging Research Center, World Hearing Center of the Institute of Physiology and Pathology of Hearing, Warsaw/Kajetany, Poland
  • World Hearing Center of the Institute of Physiology and Pathology of Hearing, Warsaw/Kajetany, Poland
autor
  • Bioimaging Research Center, World Hearing Center of the Institute of Physiology and Pathology of Hearing, Warsaw/Kajetany, Poland
Bibliografia
  • Allen EA, Erhardt EB, Damaraju E, Gruner W, Segall JM, Silva RF, Havlicek M, Rachakonda S, Fries J, Kalyanam R, Michael AM, Caprihan A et al. (2011) A baseline for the multivariate comparison of resting-state networks. Front Syst Neurosci 5: 2.
  • Allen JB (1977) Short term spectral analysis, synthesis, and modification by discrete Fourier transform. IEEE Trans Acoust Speech Signal Process 25: 235–238.
  • Allen PJ, Josephs O, Turner R (2000) A method for removing imaging artifact from continuous EEG recorded during functional MRI. NeuroImage 12: 230–239.
  • Angelakis E, Lubar JF, Stathopoulou S (2004) Electroencephalographic peak alpha frequency correlates of cognitive traits. Neurosci Lett 371: 60–63.
  • Anokhin A, Steinlein O, Fischer C, Mao Y, Vogt P, Schalt E, Vogel F (1992) A genetic study of the human low‑voltage electroencephalogram. Hum Genet 90: 99–112.
  • Başar E, Schürmann M, Başar‑Eroglu C, Karakaş S (1997) Alpha oscillations in brain functioning: an integrative theory. Int J Psychophysiol Off J Int Organ Psychophysiol 26: 5–29.
  • Bazanova OM, Vernon D (2014) Interpreting EEG alpha activity. Neurosci Biobehav Rev 44: 94–110.
  • Ben‑Simon E, Podlipsky I, Arieli A, Zhdanov A, Hendler T (2008) Never rest‑ ing brain: Simultaneous representation of two alpha related processes in humans. PLoS ONE 3: e3984.
  • Ben‑Simon E, Podlipsky I, Okon‑Singer H, Gruberger  M, Cvetkovic D, Intrator N, Hendler T (2013) The dark side of the alpha rhythm: fMRI evidence for induced alpha modulation during complete darkness. Eur J Neurosci 37: 795–803.
  • Berger PDH (1929) Über das Elektrenkephalogramm des Menschen. Arch Für Psychiatr Nervenkrankh 87: 527–570.
  • Bishop GH (1936) The interpretation of cortical potentials. Cold Spring Harb Symp Quant Biol 4: 305–319.
  • Bonnard  M, Chen S, Gaychet J, Carrere  M, Woodman  M, Giusiano B, Jirsa V (2016) Resting state brain dynamics and its transients: a com‑ bined TMS‑EEG study. Sci Rep 6: 31220.
  • Britz J, Van De Ville D, Michel CM (2010) BOLD correlates of EEG topog‑ raphy reveal rapid resting‑state network dynamics. NeuroImage 52: 1162–1170.
  • Chiang AKI, Rennie CJ, Robinson PA, Albada SJ van, Kerr CC (2011) Age trends and sex differences of alpha rhythms including split alpha peaks. Clin Neurophysiol 122: 1505–1517.
  • Cole SR, Voytek B (2017) Brain oscillations and the importance of waveform shape. Trends Cogn Sci 21: 137‑149.
  • Contreras D, Steriade  M (1997) Synchronization of low‑frequency rhythms in corticothalamic networks. Neuroscience 76: 11–24.
  • Debener S, Mullinger KJ, Niazy RK, Bowtell RW (2008) Properties of the ballistocardiogram artefact as revealed by EEG recordings at 1.5, 3 and 7 T static magnetic field strength. Int J Psychophysiol 67: 189–199.
  • DiFrancesco MW, Holland SK, Szaflarski JP (2008) Simultaneous EEG/functional magnetic resonance imaging at 4 Tesla: Correlates of brain activity to spontaneous alpha rhythm during re‑ laxation. J Clin Neurophysiol Off Publ Am Electroencephalogr Soc 25: 255–264.
  • Fair DA, Schlaggar BL, Cohen AL, Miezin FM, Dosenbach NUF, Wenger  KK, Fox MD, Snyder AZ, Raichle ME, Petersen SE (2007) A  method for using blocked and event‑related fMRI data to study “resting state” functional connectivity. NeuroImage 35: 396–405.
  • Feige B, Scheffler K, Esposito F, Salle FD, Hennig J, Seifritz E (2005) Cortical and subcortical correlates of electroencephalographic alpha rhythm modulation. J Neurophysiol 93: 2864–2872.
  • Fransson P, Marrelec G (2008) The precuneus/posterior cingulate cor‑ tex plays a pivotal role in the default mode network: Evidence from a partial correlation network analysis. NeuroImage 42: 1178–1184.
  • Garcia D (2010) Robust smoothing of gridded data in one and high‑ er dimensions with missing values. Comput Stat Data Anal 54: 1167–1178.
  • Goldman RI, Stern JM, Engel J, Cohen MS (2002) Simultaneous EEG and fMRI of the alpha rhythm. Neuroreport 13: 2487–2492.
  • Greicius M (2008) Resting‑state functional connectivity in neuropsychi‑ atric disorders. Curr Opin Neurol 21: 424–430.
  • Greicius M, Krasnow B, Reiss AL, Menon V (2003) Functional connec‑ tivity in the resting brain: A network analysis of the default mode hypothesis. Proc Natl Acad Sci 100: 253–258.
  • Gross J, Kujala J, Hämäläinen M, Timmermann L, Schnitzler A, Salmelin R (2001) Dynamic imaging of coherent sources: studying neural inter‑ actions in the human brain. Proc Natl Acad Sci 98: 694–699.
  • Gusnard DA, Raichle ME (2001) Searching for a  baseline: Functional imaging and the resting human brain. Nat Rev Neurosci 2: 685–694.
  • Ille N, Berg P, Scherg M (2002) Artifact correction of the ongoing EEG using spatial filters based on artifact and brain signal topogra‑ phies. J Clin Neurophysiol Off Publ Am Electroencephalogr Soc 19: 113–124.
  • Klimesch W, Schimke H, Pfurtscheller G (1993) Alpha frequency, cogni‑ tive load and memory performance. Brain Topogr 5: 241–251.
  • Knyazev GG, Slobodskoj‑Plusnin JY, Bocharov AV, Pylkova LV (2011) The default mode network and EEG alpha oscillations: An indepen‑ dent component analysis. Brain Res 1402: 67–79.
  • Lansky P, Bohdanecký Z, Indra M, Radil‑Weiss T (1979) Alpha detec‑ tion: some comments on Hardt and Kamiya, “Conflicting results in EEG alpha feedback studies.” Biofeedback Self‑Regul 4: 127–131.
  • Laufs H, Holt JL, Elfont R, Krams M, Paul JS, Krakow K, Kleinschmidt A (2006) Where the BOLD signal goes when alpha EEG leaves. Neuro‑ Image 31: 1408–1418.
  • Laufs H, Kleinschmidt A, Beyerle A, Eger E, Salek‑Haddadi A, Preibisch C, Krakow K (2003) EEG‑correlated fMRI of human alpha activity. Neu‑ roImage 19: 1463–1476.
  • Liu TT (2012) The development of event‑related fMRI designs. Neuro‑ Image 62: 1157–1162. Livanov MN (1984) Rhythms of the electroencephalogram and their functional significance. Zhurnal Vyssheĭ Nervn Deiatelnosti Im P Pavlova 34: 613–626.
  • Lopes da Silva FH, Lierop TH van, Schrijer CF, Leeuwen WS van (1973) Organization of thalamic and cortical alpha rhythms: spectra and coherences. Electroencephalogr Clin Neurophysiol 35: 627–639.
  • Lopes Da Silva FH, Storm Van Leeuwen W (1977) The cortical source of the alpha rhythm. Neurosci Lett 6: 237–241.
  • Mantini D, Perrucci MG, Del Gratta C, Romani GL, Corbetta M (2007) Electrophysiological signatures of resting state networks in the hu‑ man brain. Proc Natl Acad Sci 104: 13170–13175.
  • Miezin FM, Maccotta  L, Ollinger JM, Petersen SE, Buckner RL (2000) Characterizing the hemodynamic response: Effects of presentation rate, sampling procedure, and the possibility of ordering brain ac‑ tivity based on relative timing. NeuroImage 11: 735–759.
  • Mo J, Liu Y, Huang H, Ding  M (2013) Coupling between visual alpha oscillations and default mode activity. NeuroImage 68: 112–118.
  • Moosmann  M, Ritter P, Krastel I, Brink A, Thees S, Blankenburg F, Taskin B, Obrig H, Villringer A (2003) Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectros‑ copy. NeuroImage 20: 145–158.
  • Moruzzi G, Magoun HW (1949) Brain stem reticular formation and acti‑ vation of the EEG. Electroencephalogr Clin Neurophysiol 1: 455–473.
  • Munck JC de, Gonçalves SI, Huijboom  L, Kuijer JPA, Pouwels PJW, Heethaar  RM, Lopes da Silva FH (2007) The hemodynamic response of the alpha rhythm: An EEG/fMRI study. NeuroImage 35: 1142–1151.
  • Musso F, Brinkmeyer J, Mobascher A, Warbrick T, Winterer G (2010) Spontaneous brain activity and EEG microstates. A novel EEG/fMRI analysis approach to explore resting‑state networks. NeuroImage 52: 1149–1161.
  • Niedermeyer E (2005) The normal EEG of the waking adult. Electroen‑ cephalogr Basic Princ Clin Appl Relat Fields pp. 149–173.
  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9: 97–113.
  • Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci 98: 676–682.
  • Rusiniak M, Lewandowska M, Wolak T, Pluta A, Milner R, Ganc M, Włodarczyk A, Senderski A, Śliwa L, Skarżyński H (2013) A modified odd‑ ball paradigm for investigation of neural correlates of attention: a simul‑ taneous ERP–fMRI study. Magn Reson Mater Phys Biol Med 26: 511–526.
  • Rusiniak M, Lewandowska M, Pluta A, Ciesla K, Wojcik J, Wolak T (2015) Intersubject variability of thalamic activation during generation of Berger’s alpha rhythm. J Hear Sci 5: 16–22.
  • Sadaghiani S, Scheeringa R, Lehongre K, Morillon B, Giraud A‑L, Kleinschmidt A (2010) Intrinsic connectivity networks, alpha oscillations, and tonic alertness: A simultaneous electroencephalography/functional magnetic resonance imaging study. J Neurosci 30: 10243–10250.
  • Scheeringa R, Petersson KM, Kleinschmidt A, Jensen O, Bastiaansen MCM (2012) EEG alpha power modulation of fMRI resting‑state connectivity. Brain Connect 2: 254–264.
  • Schreckenberger  M, Lange‑Asschenfeld C, Lochmann  M, Mann K, Siessmeier  T, Buchholz H‑G, Bartenstein P, Gründer G (2004) The thalamus as the generator and modulator of EEG alpha rhythm: a  combined PET/EEG study with lorazepam challenge in humans. NeuroImage 22: 637–644.
  • Schürmann  M, Demiralp T, Başar E, Başar Eroglu C (2000) Electro‑ encephalogram alpha (8‑15  Hz) responses to visual stimuli in cat cortex, thalamus, and hippocampus: a  distributed alpha network? Neurosci Lett 292: 175–178.
  • Steriade  M, McCormick DA, Sejnowski TJ (1993) Thalamocortical os‑ cillations in the sleeping and aroused brain. Science 262: 679–685.
  • Timofeev I, Grenier F, Bazhenov M, Houweling AR, Sejnowski TJ, Ste‑ riade  M (2002) Short‑ and medium‑term plasticity associated with augmenting responses in cortical slabs and spindles in intact cortex of cats in vivo. J Physiol 542: 583–598.
  • Timofeev I, Bazhenov M (2005) Mechanisms and biological role of thalam‑ ocortical oscillations. Trends Chronobiol Res pp. 1–47.
  • Tyvaert  L, LeVan P, Grova C, Dubeau F, Gotman J (2008) Effects of fluc‑ tuating physiological rhythms during prolonged EEG‑fMRI studies. Clin Neurophysiol 119: 2762–2774. Whitfield‑Gabrieli S, Moran JM, Nieto‑Castañón A, Triantafyllou C, Saxe  R, Gabrieli JDE (2011) Associations and dissociations between default and self‑reference networks in the human brain. NeuroImage 55: 225–232.
  • Zhan Z, Xu L, Zuo T, Xie D, Zhang J, Yao L, Wu X (2014) The contribution of different frequency bands of fMRI data to the correlation with EEG alpha rhythm. Brain Res 1543: 235–243.
  • Zou Q, Long X, Zuo X, Yan C, Zhu C, Yang Y, Liu D, He Y, Zang Y (2009) Func‑ tional connectivity between the thalamus and visual cortex under eyes closed and eyes open conditions: A resting‑state fMRI study. Hum Brain Mapp 30: 3066–3078.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-ddc95a5b-6a4f-4789-a814-97edcc286804
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.