Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2018 | 77 | 2 |
Tytuł artykułu

A computational simulation of long-term synaptic potentiation inducing protocol processes with model of CA3 hippocampal microcircuit

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An experimental study of computational model of the CA3 region presents cognitive and behavioural functions the hippocampus. The main property of the CA3 region is plastic recurrent connectivity, where the connections allow it to behave as an auto-associative memory. The computer simulations showed that CA3 model performs efficient long-term synaptic potentiation (LTP) induction and high rate of sub-millisecond coincidence detection. Average frequency of the CA3 pyramidal cells model was substantially higher in simulations with LTP induction protocol than without the LTP. The entropy of pyramidal cells with LTP seemed to be significantly higher than without LTP induction protocol (p = 0.0001). There was depression of entropy, which was caused by an increase of forgetting coefficient in pyramidal cells simulations without LTP (R = –0.88, p = 0.0008), whereas such correlation did not appear in LTP simulation (p = 0.4458). Our model of CA3 hippocampal formation microcircuit biologically inspired lets you understand neurophysiologic data. (Folia Morphol 2018; 77, 2: 210–220)
Słowa kluczowe
Wydawca
-
Czasopismo
Rocznik
Tom
77
Numer
2
Opis fizyczny
p.210–220,fig.,ref.
Twórcy
autor
  • Intrafaculty College of Medical Informatics and Biostatistics, Medical University of Gdansk, Debinki 1, 80–211 Gdansk, Poland
autor
  • Department of Anatomy and Neurobiology, Medical University of Gdansk, Gdansk, Poland
autor
  • Department of Periodontology and Oral Mucosa Diseases, Medical University of Gdansk, Gdansk, Poland
Bibliografia
  • 1. Andersen P, Morris R, Amaral R, et al. The Hippocampus Book. 2009, doi: 10.1093/acprof:oso/9780195100273.001.0001, indexed in Pubmed:25246403.
  • 2. Aradi I, Holmes WR. Role of multiple calcium and calciumdependent conductances in regulation of hippocampal dentate granule cell excitability. J Comput Neurosci. 1999; 6(3): 215–235, doi: 10.1023/A:1008801821784, indexed in Pubmed: 10406134.
  • 3. Arleo A, Gerstner W. Spatial cognition and neuro-mimetic navigation: a model of hippocampal place cell activity. Biol Cybern. 2000; 83(3): 287–299, doi:10.1007/s004220000171, indexed in Pubmed: 11007302.
  • 4. Babinec P, Kučera M, Babincová M. Global characterization of time series using fractal dimension of corresponding recurrence plots: from dynamical systems to heart physiology. Harmon Fractal Image Anal. 2005; 1: 87–93.
  • 5. Bienenstock EL, Cooper LN, Munro PW. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci. 1982; 2(1): 32–48, doi: 10.1371/journal.ppat.0020109, indexed in Pubmed: 7054394.
  • 6. Bliss T, Lømo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol. 1973; 232(2): 331–356, doi: 10.1113/jphysiol.1973.sp010273.
  • 7. Boss B, Turlejski K, Stanfield B, et al. On the numbers of neurons on fields CA1 and CA3 of the hippocampus of SpragueDawley and Wistar rats. Brain Res. 1987; 406(1-2): 280–287, doi: 10.1016/0006-8993(87)90793-1.
  • 8. Bragin A, Jandó G, Nádasdy Z, et al. Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat. J Neurosci. 1995; 15(1 Pt 1): 47–60, doi:10.1523/jneurosci.4104-10.2010, indexed in Pubmed: 7823151.
  • 9. Brunel N, Trullier O. Plasticity of directional place fields in a model of rodent CA3. Hippocampus. 1998; 8(6): 651–665, doi: 10.1002/(SICI)1098-1063(1998)8:6<651::AID-HIPO8>3.0.CO;2-L, indexed in Pubmed: 9882023.
  • 10. Buzsáki G, Leung LW, Vanderwolf CH. Cellular bases of hippocampal EEG in the behaving rat. Brain Res Rev. 1983; 287(2): 139–171, doi: 0.1016/0165-0173(83)90037-1, indexed in Pubmed: 6357356.
  • 11. Buzsáki G. Two-stage model of memory trace formation: A role for “noisy” brain states. Neuroscience. 1989; 31(3): 551–570, doi: 10.1016/0306-4522(89)90423-5, indexed in Pubmed: 2687720.
  • 12. Buzsáki G. Theta Oscillations in the Hippocampus. Neuron. 2002; 33(3): 325–340, doi: 10.1016/s0896-6273(02)00586-x, indexed in Pubmed:11832222.
  • 13. Cannon R, Hasselmo M, Koene R. From Biophysics to Behavior Catacomb2 and the Design of Biologically-Plausible Models for Spatial Navigation. Neuroinformatics. 2003; 1(1): 003–042, doi: 10.1385/ni:1:1:003, indexed in Pubmed: 15055391.
  • 14. Cutsuridis V, Graham B, Cobb SR, et al. Hippocampal Microcircuits: A Computational Modelers’ Resource Book. 2010, doi: 10.1007/978-1-4419-0996-1, indexed in Pubmed: 8043237.
  • 15. Hasselmo ME, Schnell E, Barkai E. Dynamics of learning and recall at excitatory recurrent synapses and cholinergic modulation in rat hippocampal region CA3. J Neurosci. 1995; 15(7 Pt 2): 5249–5262, indexed in Pubmed: 7623149.
  • 16. Huerta PT, Lisman JE. Heightened synaptic plasticity of hippocampal CA1 neurons during a cholinergically induced rhythmic state. Nature. 1993; 364(6439): 723–725, doi: 10.1038/364723a0, indexed in Pubmed: 8355787.
  • 17. Jackson MB. Recall of spatial patterns stored in a hippocampal slice by long-term potentiation. J Neurophysiol. 2013; 110(11): 2511–2519, doi:10.1152/jn.00533.2013, indexed in Pubmed: 24027100.
  • 18. Káli S, Dayan P. The involvement of recurrent connections in area CA3 in establishing the properties of place fields: a model. J Neurosci. 2000; 20(19): 7463–7477, indexed in Pubmed: 11007906.
  • 19. Klausberger T, Magill PJ, Márton LF, et al. Brain-state- and celltype-specific firing of hippocampal interneurons in vivo. Nature. 2003; 421(6925): 844–848, doi: 10.1038/nature01374, indexed in Pubmed: 12594513.
  • 20. Klausberger T, Somogyi P. Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science. 2008; 321(5885): 53–57, doi:10.1126/science.1149381, indexed in Pubmed: 18599766.
  • 21. Llorens-Martin M, Blazquez-Llorca L, Benavides-Piccione R, et al. Selective alterations of neurons and circuits related to early memory loss in Alzheimer’s disease. Frontiers Neuroanat. 2014; 8, doi: 10.3389/fnana.2014.00038, indexed in Pubmed: 24904307.
  • 22. Lynch MA. Long-term potentiation and memory. Physiol Rev. 2004; 84(1): 87–136, doi: 10.1152/physrev.00014.2003, indexed in Pubmed: 14715912.
  • 23. Marr D. Simple Memory: A Theory for Archicortex. Philos Trans R Soc B Biol Sci. 1971; 262(841): 23–81, doi: 10.1098/rstb.1971.0078, indexed in Pubmed: 4399412.
  • 24. McClelland JL, Goddard NH. Considerations arising from a complementary learning systems perspective on hippocampus and neocortex. Hippocampus. 1996; 6(6): 654–665, doi: 10.1002/(SICI)1098-1063(1996)6:6<654::AID-HIPO8>3.0.CO;2-G, indexed in Pubmed: 9034852.
  • 25. Migliore M, Cook EP, Jaffe DB, et al. Computer simulations of morphologically reconstructed CA3 hippocampal neurons. J Neurophysiol. 1995; 73(3): 1157–1168, doi: 10.1152/jn.1995.73.3.1157, indexed in Pubmed: 7608762.
  • 26. Misják F, Lengyel M, Érdi P. Episodic Memory and Cognitive Map in a Rate Model Network of the Rat Hippocampus. Lecture Notes in Computer Science. 2001: 1135–1140, doi: 10.1007/3-540-44668-0_158.
  • 27. Mizuseki K, Sirota A, Pastalkova E, et al. Theta oscillations provide temporal windows for local circuit computation in the entorhinalhippocampal loop. Neuron. 2009; 64(2): 267–280, doi: 10.1016/j.neuron.2009.08.037, indexed in Pubmed: 19874793.
  • 28. Morris RGM. Does synaptic plasticity play a role in information storage in the vertebrate brain? In R. G. M. Morris (Ed.), Parallel distributed processing: Implications for psychology and neurobiology. New York, NY, US: Clarendon Press/Oxford University Press. 1989: 248–285.
  • 29. Morris RGM, Moser EI, Riedel G, et al. Elements of a neurobiological theory of the hippocampus: the role of activity-dependent synaptic plasticity in memory. Philos Trans R Soc Lond B Biol Sci. 2003; 358(1432): 773–786, doi: 10.1098/rstb.2002.1264, indexed in Pubmed: 12744273.
  • 30. Morris RGM. Long-term potentiation and memory. Philos Trans R Soc Lond B Biol Sci. 2003; 358(1432): 643–647, doi: 10.1098/rstb.2002.1230, indexed in Pubmed: 12740109.
  • 31. Nakazawa K, Quirk MC, Chitwood RA, et al. Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science. 2002; 297(5579): 211–218, doi: 10.1126/science.1071795, indexed in Pubmed: 12040087.
  • 32. Nakazawa K, Sun L, Quirk M, et al. Hippocampal CA3 NMDA Receptors Are Crucial for Memory Acquisition of One-Time Experience. Neuron. 2003; 38(2): 305–315, doi: 10.1016/s0896-6273(03)00165-x, indexed in Pubmed: 12718863.
  • 33. Nakazawa K, McHugh TJ, Wilson MA, et al. NMDA receptors, place cells and hippocampal spatial memory. Nat Rev Neurosci. 2004; 5(5): 361–372, doi:10.1038/nrn1385, indexed in Pubmed: 15100719.
  • 34. O’Keefe J, Recce ML. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus. 1993; 3(3): 317–330, doi:10.1002/hipo.450030307, indexed in Pubmed: 8353611.
  • 35. O’Reilly RC, McClelland JL. Hippocampal conjunctive encoding, storage, and recall: avoiding a trade-off. Hippocampus. 1994; 4(6): 661–682, doi:10.1002/hipo.450040605, indexed in Pubmed: 7704110.
  • 36. Poirazi P, Brannon T, Mel B. Arithmetic of subthreshold synaptic summation in a model CA1 pyramidal cell. Neuron. 2003; 37(6): 977–987, doi:10.1016/s0896-6273(03)00148-x, indexed in Pubmed: 12670426.
  • 37. Poirazi P, Brannon T, Mel BW. Pyramidal neuron as two-layer neural network. Neuron. 2003; 37(6): 989–999, doi: 10.1016/S0896-6273(03)00149-1, indexed in Pubmed: 12670427.
  • 38. Rolls ET, Stringer SM, Trappenberg TP. A unified model of spatial and episodic memory. Proc Biol Sci. 2002; 269(1496): 1087–1093, doi:10.1098/rspb.2002.2009, indexed in Pubmed: 12061949.
  • 39. Rolls E. Cerebral Cortex. Principles of Operation. Oxford University Press, Oxford. 2016.
  • 40. Rolls ET. Pattern separation, completion, and categorisation in the hippocampus and neocortex. Neurobiol Learn Mem. 2016; 129: 4–28, doi:10.1016/j.nlm.2015.07.008, indexed in Pubmed: 26190832.
  • 41. Samsonovich AV. A simple neural network model of the hippocampus suggesting its pathfinding role in episodic memory retrieval. Learn Mem. 2005; 12(2): 193–208, doi: 10.1101/lm.85205, indexed in Pubmed: 15774943.
  • 42. Santhakumar V, Aradi I, Soltesz I. Role of mossy fiber sprouting and mossy cell loss in hyperexcitability: a network model of the dentate gyrus incorporating cell types and axonal topography. J Neurophysiol. 2005; 93(1): 437–453, doi: 10.1152/jn.00777.2004, indexed in Pubmed: 15342722.
  • 43. Saraga F, Wu CP, Zhang L, et al. Active dendrites and spike propagation in multicompartment models of oriens-lacunosum/moleculare hippocampal interneurons. J Physiol. 2004; 552(3): 673–689, doi: 10.1113/jphysiol.2003.046177, indexed in Pubmed: 12923216.
  • 44. Shastri L. Episodic memory and cortico–hippocampal interactions. Trends Cogn Sci. 2002; 6(4): 162–168, doi: 10.1016/s1364-6613(02)01868-5, indexed in Pubmed: 11912039.
  • 45. Sikora MA, Gottesman J, Miller RF. A computational model of the ribbon synapse. J Neurosci Methods. 2005; 145(1-2): 47–61, doi:10.1016/j.jneumeth.2004.11.023, indexed in Pubmed: 15922025.
  • 46. Skaggs W, McNaughton B, Wilson M, et al. Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus. 1996; 6(2): 149–172, doi: 10.1002/(sici)1098-1063(1996)6:2<149::aid-hipo6>3.0.co;2-k, indexed in Pubmed: 8797016.
  • 47. Squire L. Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans. Psychol Rev. 1992; 99(2): 195–231, doi:10.1037/0033-295x.99.2.195, indexed in Pubmed: 1594723.
  • 48. Somogyi P, Klausberger T. Defined types of cortical interneurone structure space and spike timing in the hippocampus. J Physiol. 2004; 562(1): 9–26, doi: 10.1113/jphysiol.2004.078915, indexed in Pubmed: 15539390.
  • 49. Somogyi P, Katona L, Klausberger T, et al. Temporal redistribution of inhibition over neuronal subcellular domains underlies statedependent rhythmic change of excitability in the hippocampus. Philos Trans R Soc Lond B Biol Sci. 2014; 369(1635): 20120518, doi: 10.1098/rstb.2012.0518, indexed in Pubmed: 24366131.
  • 50. Stewart M, Fox S. Do septal neurons pace the hippocampal theta rhythm? Trends Neurosci. 1990; 13(5): 163–169, doi: 10.1016/0166-2236(90)90040-h, indexed in Pubmed: 1693232.
  • 51. Swanson LW, Cowan WM. An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat. J Comp Neurol. 1977; 172(1): 49–84, doi: 10.1002/cne.901720104, indexed in Pubmed: 65364.
  • 52. Treves A, Rolls ET. Computational analysis of the role of the hippocampus in memory. Hippocampus. 1994; 4(3): 374–391, doi:10.1002/hipo.450040319, indexed in Pubmed: 7842058.
  • 53. Tukker JJ, Lasztoczi B, Katona L, et al. Distinct Dendritic Arborization and In Vivo Firing Patterns of Parvalbumin-Expressing Basket Cells in the Hippocampal Area CA3. J Neurosci. 2013; 33(16): 6809–6825, doi: 10.1523/jneurosci.5052-12.2013, indexed in Pubmed: 23595740.
  • 54. Urban NN, Henze DA, Barrionuevo G. Revisiting the role of the hippocampal mossy fiber synapse. Hippocampus. 2001; 11(4): 408–417, doi:10.1002/hipo.1055, indexed in Pubmed: 11530845.
  • 55. Viney TJ, Lasztoczi B, Katona L, et al. Network state-dependent inhibition of identified hippocampal CA3 axo-axonic cells in vivo. Nat Neurosci. 2013; 16(12): 1802–1811, doi: 10.1038/nn.3550, indexed in Pubmed: 24141313.
  • 56. Wang SH, Morris R. Hippocampal-Neocortical Interactions in Memory Formation, Consolidation, and Reconsolidation. Annu Rev Psychol. 2010; 61(1): 49–79, doi: 10.1146/annurev.psych.093008.100523, indexed in Pubmed: 19575620.
  • 57. Willshaw DJ, Buneman OP, Longuet-Higgins HC. Non-holographic associative memory. Nature. 1969; 222(5197): 960–962, doi: 10.1038/222960a0, indexed in Pubmed: 5789326.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-db424dde-c7d9-4851-80ea-62f7a69e02af
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.