Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 20 | 2 |
Tytuł artykułu

Function of distress calls in least horseshoe bats: a Field study using playback experiments

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Many social animals utter distress calls in the context of fear. These vocalizations may serve to attract audiences for help, warn individuals of danger, and confuse the predator. Here, we aim to assess the function of distress calls in free-living least horseshoe bats, Rhinolophus pusillus. We recorded distress calls from four allopatric colonies in mainland China. Playback trials, consisting of distress calls, silence, and noise, were presented to bats outside three bat roosts. Rhinolophus pusillus emitted long, harsh, broadband calls when under duress. Playback of distress calls induced a significant increase in bat passes at the loudspeaker in comparison with control trials. The number of recorded echolocation pulses increased 3.2–6.1 folds during playbacks of distress calls compared to playbacks of silence, and 2.9–5.2 folds compared to playbacks of noise. There was a positive association between bat passes and echolocation vocalizations. However, some bats delayed their emergence from the roost in response to distress call stimuli. Despite similar delayed responses, more bat passes were detected in the presence of allopatric distress calls than those from colony members. Overall, the results indicate that distress calls could attract and warn conspecifics in least horseshoe bats.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
20
Numer
2
Opis fizyczny
p.455-464,fig.,ref.
Twórcy
autor
  • Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, Nanchong 637009, China
autor
  • Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, Nanchong 637009, China
autor
  • Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, Nanchong 637009, China
  • Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 255 Jingyue Street, Changchun 130117, China
autor
  • Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, Nanchong 637009, China
autor
  • Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 255 Jingyue Street, Changchun 130117, China
  • College of Animal Science and Technology, Jilin Agricultural University, Changchun 130117, China
Bibliografia
  • 1. August, P. 1979. Distress calls in Artibeus jamaicensis: ecology and evolutionary implications. Pp. 151–159, in Vertebrate ecology in the northern Neotropics ( J. F. Eisenberg, ed.). Smithsonian Institution Press, Washington, D.C., 271 pp. Google Scholar
  • 2. Bohn, K. M., B. Schmidt French, S. T. Ma, and G. D. Pollak. 2008. Syllable acoustics, temporal patterns, and call composition vary with behavioral context in Mexican freetailed bats. Journal of the Acoustical Society of America, 124: 1838–1848. Google Scholar
  • 3. Bradbury, J. W., and S. L. Vehrencamp. 1998. Principles of animal communication. Sinauer Associates, Sunderland, MA, 697 pp. Google Scholar
  • 4. Branch, C. L., and T. M. Freeberg. 2012. Distress calls in tufted titmice (Baeolophus bicolor): are conspecifics or predators the target? Behavioral Ecology, 23: 854–862. Google Scholar
  • 5. Brough, T. 1969. The dispersal of starlings from woodland roosts and the use of bio-acoustics. Journal of Applied Ecol-ogy, 6: 403–410. Google Scholar
  • 6. Caro, T. 2005. Antipredator defenses in birds and mammals. University of Chicago Press, Chicago, 592 pp. Google Scholar
  • 7. Carter, G., D. Schoeppler, M. Manthey, M. Knornschild, and A. Denzinger. 2015. Distress calls of a fast-flying bat (Molossus molossus) provoke inspection flights but not cooperative mobbing. PLoS ONE, 10: e0136146. Google Scholar
  • 8. Chaiken, M. 1992. Individual recognition of nestling distress screams by European starlings (Sturnus vulgaris). Behaviour, 120: 139–150. Google Scholar
  • 9. Clement, M. J., and J. S. Kanwal. 2012. Simple syllabic calls accompany discrete behavior patterns in captive Pteronotus parnellii: an illustration of the motivation-structure hypothesis. The Scientific World Journal, 2012: 128695. Google Scholar
  • 10. Conover, M. R. 1994. Stimuli eliciting distress calls in adult passerines and response of predators and birds to their broad cast. Behaviour, 131: 19–37. Google Scholar
  • 11. Eckenweber, M., and M. Knornschild. 2016. Responsiveness to conspecific distress calls is influenced by day-roost proximity in bats (Saccopteryx bilineata). Royal Society Open Science, 3: 160151. Google Scholar
  • 12. Fenton, M. B., J. J. Belwood, J. H. Fullard, and T. H. Kunz. 1976. Responses of Myotis lucifugus (Chiroptera: Vespertilionidae) to calls of conspecifics and to other sounds. Canadian Journal of Zoology, 54: 1443–1448. Google Scholar
  • 13. Fenton, M. B., I. L. Rautenbach, S. E. Smith, C. M. Swane Poel, J. Grosell, and J. Van Jaarsveld. 1994. Raptors and bats: threats and opportunities. Animal Behaviour, 48: 9–18. Google Scholar
  • 14. Gillam, E., and M. B. Fenton. 2016. Roles of acoustic social communication in the lives of bats. Pp. 117–139, in Bat bioacoustics ( B. M. Fenton, D. A. Grinnell, N. A. Popper, and R. R. Fay, eds.). Springer, New York, xvi + 304 pp. Google Scholar
  • 15. Halfwerk, W., P. L. Jones, R. C. Taylor, M. J. Ryan, and R. A. Page. 2014. Risky ripples allow bats and frogs to eavesdrop on a multisensory sexual display. Science, 343: 413–416. Google Scholar
  • 16. Hamilton, W. D. 1964. The genetical evolution of social behaviour. Journal of Theoretical Biology, 7: 1–16. Google Scholar
  • 17. Hechavarría, J. C., M. J. Beetz, S. Macias, and M. Kossl. 2016a. Distress vocalization sequences broadcasted by bats carry redundant information. Journal of Comparative Physiology A, 202: 503–515. Google Scholar
  • 18. Hechavarría, J. C., M. J. Beetz, S. Macias, and M. Kossl. 2016b. Vocal sequences suppress spiking in the bat auditory cortex while evoking concomitant steady-state local field potentials. Scientific Reports, 6: 39226. Google Scholar
  • 19. Huang, X. B., J. S. Kanwal, T. L. Jiang, Z. Y. Long, B. Luo, X. K. Yue, Y. B. Gu, and J. Feng. 2015. Situational and age-dependent decision making during life threatening distress in Myotis macrodactylus. PLoS ONE, 10: e0132817. Google Scholar
  • 20. Hughes, N. K., J. L. Kelley, and P. B. Banks. 2012. Dangerous liaisons: the predation risks of receiving social signals. Ecol ogy Letters, 15: 1326–1339. Google Scholar
  • 21. Jiang, T. L., W. Metzner, Y. Y. You, S. Liu, G. J. Lu, S. Li, L. Wang, and J. Feng. 2010. Variation in the resting frequency of Rhinolophus pusillus in Mainland China: effect of climate and implications for conservation. Journal of the Acoustical Society of America, 128: 2204–2211. Google Scholar
  • 22. Jiang, T. L., H. Wu, and J. Feng. 2015. Patterns and causes of geographic variation in bat echolocation pulses. Integrative Zoology, 10: 241–256. Google Scholar
  • 23. Jones, G., and J. Rydell. 1994. Foraging strategy and predation risk as factors influencing emergence time in echolocating bats. Philosophical Transactions of the Royal Society of London, 346B: 445–455. Google Scholar
  • 24. Kanwal, J. S., S. Matsumura, K. Ohlemiller, and N. Suga. 1994. Analysis of acoustic elements and syntax in communication sounds emitted by mustached bats. Journal of the Acoustical Society of America, 96: 1229–1254. Google Scholar
  • 25. Koenig, W. D., M. T. Stanback, P. N. Hooge, and R. L. Mummee. 1991. Distress calls in the acorn woodpecker. Condor, 93: 637–643. Google Scholar
  • 26. Krams, I., T. Krama, and K. Igaune. 2006. Alarm calls of wintering great tits Parus major: warning of mate, reciprocal altruism or a message to the predator? Journal of Avian Biology, 37: 131–136. Google Scholar
  • 27. Laumann, R. A., M. C. B. Moraes, A. Čokl, and M. Borges. 2007. Eavesdropping on sexual vibratory signals of stink bugs (Hemiptera: Pentatomidae) by the egg parasitoid Telenomus podisi. Animal Behaviour, 73: 637–649. Google Scholar
  • 28. Lima, S. L., and J. M. O'keefe. 2013. Do predators influence the behaviour of bats? Biological Reviews, 88: 626–644. Google Scholar
  • 29. Lingle, S., D. Rendall, and S. M. Pellis. 2007a. Altruism and recognition in the antipredator defence of deer: 1. Species and individual variation in fawn distress calls. Animal Behaviour, 73: 897–905. Google Scholar
  • 30. Lingle, S., D. Rendall, W. F. Wilson, R. W. Deyoung, and S. M. Pellis. 2007b. Altruism and recognition in the antipredator defence of deer: 2. Why mule deer help nonoffspring fawns. Animal Behaviour, 73: 907–916. Google Scholar
  • 31. Luo, B., T. L. Jiang, Y. Liu, J. Wang, A. Q. Lin, , X. W. Wei, and J. Feng. 2013. Brevity is prevalent in bat short-range communication. Journal of Comparative Physiology, 199A: 325–333. Google Scholar
  • 32. Luo, B., G. J. Lu, K. Chen, D. G. Guo, X. B. Huang Y. Liu, and J. Feng. 2017. Social calls honestly signal female competitive ability in Asian particoloured bats. Animal Behaviour, 127: 101–108. Google Scholar
  • 33. Luo, J. H., B. M. Siemers, and K. Koselj. 2015. How anthropogenic noise affects foraging. Global Change Biology, 21: 3278–3289. Google Scholar
  • 34. Mackey, R. L., and R. M. R. Barclay. 1989. The influence of physical clutter and noise on the activity of bats over water. Canadian Journal of Zoology, 67: 1167–1170. Google Scholar
  • 35. Mariappan, S., W. Bogdanowicz, G. Marimuthu, and K. E. Rajan. 2013. Distress calls of the greater short-nosed fruit bat Cynopterus sphinx activate hypothalamic-pituitaryadrenal (HPA) axis in conspecifics. Journal of Comparative Physiology, 199A: 1–9. Google Scholar
  • 36. Martin, L. M., F. García-Rosales, M. J. Beetz, and J. C. Hechavarría. 2017. Processing of temporally patterned sounds in the auditory cortex of Seba's short-tailed bat, Carollia perspicillata. European Journal of Neuroscience, 46: 2365–2379. Google Scholar
  • 37. Mascagni, O., and G. A. Doyle. 1993. Infant distress vocalizations in the Southern African Lesser Bushbaby (Galago moholi). International Journal of Primatology, 14: 41–60. Google Scholar
  • 38. Morton, E. S. 1977. On the occurrence and significance of motivation-structural rules in some bird and mammal sounds. American Naturalist, 111: 855–869. Google Scholar
  • 39. Murphy, D., S. E. G. Lea, and K. Zuberbuhler. 2013. Male blue monkey alarm calls encode predator type and distance. Animal Behaviour, 85: 119–125. Google Scholar
  • 40. Ouattara, K., A. Lemasson, and K. Zuberbühler. 2009. Camp bell's monkeys concatenate vocalizations into context-specific call sequences. Proceedings of the National Academy of Sciences of the USA, 106: 22026. Google Scholar
  • 41. Puechmaille, S. J., M. A. Gouilh, P. Piyapan, M. Yokubol, K. M. Mie, P. J. Bates, C. Satasook, T. Nwe, S. S. H. Bu, and I. J. Mackie. 2011. The evolution of sensory divergence in the context of limited gene flow in the bumblebee bat. Nature Communications, 2: 573. Google Scholar
  • 42. Rendall, D., H. Notman, and M. J. Owren. 2009. Asymmetries in the individual distinctiveness and maternal recognition of infant contact calls and distress screams in baboons. Journal of the Acoustical Society of America, 125: 1792–1805. Google Scholar
  • 43. Russ, J. M., P. A. Racey, and G. Jones. 1998. Intraspecific responses to distress calls of the pipistrelle bat, Pipistrellus pipistrellus. Animal Behaviour, 55: 705–713. Google Scholar
  • 44. Russ, J. M., G. Jones, I. J. Mackie, and P. A. Racey. 2004. Interspecific responses to distress calls in bats (Chiroptera: Vespertilionidae): a function for convergence in call design? Animal Behaviour, 67: 1005–1014. Google Scholar
  • 45. Schaub, A., J, Ostwald, and B. M. Siemers. 2008. Foraging bats avoid noise. Journal of Experimental Biology, 211: 3174–3180. Google Scholar
  • 46. Schnitzler, H.-U., C. F. Moss, and A. Denzinger. 2003. From spatial orientation to food acquisition in echolocating bats. Trends in Ecology & Evolution, 18: 386–394. Google Scholar
  • 47. Shirley, M. D. F., V. L. Armitage, T. L. Barden, M. Gough, P. W. W. Lurz, D. E. Oatway, A. B. South, and S. P. Rush-Ton. 2001. Assessing the impact of a music festival on the emergence behaviour of a breeding colony of Daubenton's bats (Myotis daubentonii). Journal of Zoology (London), 254: 367–373. Google Scholar
  • 48. Sibly, R. M., H. M. R. Nott, and D. J. Fletcher. 1990. Split t ing behaviour into bouts. Animal Behaviour, 39: 63–69. Google Scholar
  • 49. Simmons, N. B. 2005. Order Chiroptera, Pp. 312–529, in Mammal species of the World: a taxonomic and geographic reference ( D. E. Wilson and D. M. Reeder, eds.). Johns Hopkins University Press, Baltimore, 2142 pp. Google Scholar
  • 50. Sun, K. P, L. Luo, R. T. Kimball, X. W. Wei, L. R. Jin, T. L. Jiang, G. H. Li, and J. Feng. 2013. Geographic variation in the acoustic traits of greater horseshoe bats: testing the importance of drift and ecological selection in evolutionary processes. PLoS ONE, 8:e70368. Google Scholar
  • 51. Welbergen, J. A. 2006. Timing of the evening emergence from day roosts of the grey-headed flying fox, Pteropus poliocephalus: the effects of predation risk, foraging needs, and social context. Behavioral Ecology and Sociobiology, 60: 311–322. Google Scholar
  • 52. Wiley, R. H., and D. G. Richards. 1978. Physical constraints on acoustic communication in the atmosphere: implications for the evolution of animal vocalizations. Behavioral Ecol ogy and Sociobiology, 3: 69–94. Google Scholar
  • 53. Wise, K. K., M. R. Conover, and F. F. Knowlton. 1999. Response of coyotes to avian distress calls: testing the startlepredator and predator-attraction hypotheses. Behaviour, 136: 935–950. Google Scholar
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-da9c830b-168b-4b7d-a1ee-707d6c0ce4f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.