Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 33 | 4 |
Tytuł artykułu

Different antioxidant responses to salt stress in two different provenances of Carthamus tinctorius L.

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Seedlings of two Tunisian Carthamus tinctorius L. provenances (Kairouan and Tazarka) differing in salt sensitivity were hydroponically grown at 0 and 50 mM NaCl over 21 days. Leaves of Kairouan (saltsensitive) showed a 48% restriction in their growth at 50 mM NaCl although they accumulated less sodium than those of Tazarka (less salt-sensitive) that maintained an unchanged growth. Salt treatment induced oxidative stress in C. tinctorius and the effect was more pronounced in the leaves of the more salt sensitive provenance, Kairouan. Both provenances exhibited a stimulation of antioxidant enzyme activities with higher catalase (CAT) and superoxide dismutase (SOD) activities in Tazarka and higher peroxidase (POD) activity in Kairouan. But, it seems that antioxidant activities were more correlated with polyphenol content. Actually, leaves of Tazarka experienced higher polyphenol and antioxidant activity than Kairouan at 50 mM NaCl. Hence, moderate salinity (3 g NaCl L⁻¹) enhanced bioactive molecule yield in the less salt sensitive provenance, Tazarka. In addition, C. tinctorius was found rich in ascorbic acid, but the moderate salt stress enhanced its production only in the sensitive provenance.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
33
Numer
4
Opis fizyczny
p.1435-1444,fig.,ref.
Twórcy
  • Unite de Physiologie et de Biochimie de la Tolerance au Sel des Plantes, Faculte des Sciences de Tunis, Campus Universitaire, 2092, Tunis El Manar, Tunisia
autor
  • Unite de Physiologie et de Biochimie de la Tolerance au Sel des Plantes, Faculte des Sciences de Tunis, Campus Universitaire, 2092, Tunis El Manar, Tunisia
autor
  • Laboratory of Extremophile Plants (LPE), Biotechnology Centre of Borj Cedria (CBBC), P.O. Box 901, 2050, Hammam-Lif, Tunisia
autor
  • Laboratory of Extremophile Plants (LPE), Biotechnology Centre of Borj Cedria (CBBC), P.O. Box 901, 2050, Hammam-Lif, Tunisia
autor
  • Laboratory of Extremophile Plants (LPE), Biotechnology Centre of Borj Cedria (CBBC), P.O. Box 901, 2050, Hammam-Lif, Tunisia
autor
  • Unite de Physiologie et de Biochimie de la Tolerance au Sel des Plantes, Faculte des Sciences de Tunis, Campus Universitaire, 2092, Tunis El Manar, Tunisia
autor
  • Unite de Physiologie et de Biochimie de la Tolerance au Sel des Plantes, Faculte des Sciences de Tunis, Campus Universitaire, 2092, Tunis El Manar, Tunisia
autor
  • Unite de Physiologie et de Biochimie de la Tolerance au Sel des Plantes, Faculte des Sciences de Tunis, Campus Universitaire, 2092, Tunis El Manar, Tunisia
Bibliografia
  • Abdul-Jaleel CA, Manivannan P, Murugan G, Lakshmanan GMA, Sridharan R, Panneerselvam R (2007) NaCl as a physiological modulator of proline metabolism and antioxidant potential in Phyllantulus amarus. CR Biol 330:806–813
  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126
  • Asensi-Fabado MA, Munné-Bosch S (2010) Vitamins in plants: occurrence, biosynthesis and antioxidant function. Trends Plant Sci 15(10):582–592
  • Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27:84–93
  • Balasundram N, Sundram K, Samman S (2006) Phenolic compounds in plants and agri-industrial by products: antioxidant activity, occurrence, and potential uses. Food Chem 99:191–203
  • Bassil ES, Kaffka SR (2002) Response of safflower (Carthamus tinctorius L.) to saline soils and irrigation. II. Crop response to salinity. Agric Water Manage 54:81–92
  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287
  • Belaqziz R, Romane A, Abbad A (2009) Salt stress effects on germination, growth and essential oil content of an endemic thyme species in Morocco (Thymus Maroccanus Ball.). J Appl Sci Res 5(7):858–886
  • Ben Amor N, Ben Hamed K, Debez A, Grignon C, Abdelly C (2005) Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity. Plant Sci 168:889–899
  • Ben Amor N, Jime'nez A, Megdiche W, Lundqvist M, Sevilla F, Abdelly C (2006) Response of antioxidant systems to NaCl stress in the Cakile maritima. Physiol Plant 126(3):446–456
  • Bowler M, Montagu V, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Anal Biochem 72:248–254
  • Buege GA, Aust SD (1972) Microsomal lipid peroxidation. Methods Enzymol 52:302–310
  • Dasgupta N, De B (2007) Antioxidant activity of some leafy vegetables of India: a comparative study. Food Chem 101: 471–474
  • Davey MW, Van Montagu M, Inzé D, Sanmartin M (2000) Plant Lascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J Sci Food Agric 80:825–860
  • Demiral T, Türkan I (2005) Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot 53:247–257
  • Dewanto V, Wu X, Adom KK, Liu RH (2002) Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem 50:3010–3014
  • Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9
  • Djeridane A, Yousfi M, Nadjemi B, Boutassouna D, Stocker P, Vidal N (2006) Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem 97:654–660
  • Elkahoui S, Hernández JA, Abdelly C, Ghrir R, Limam F (2005) Effects of salt on lipid peroxidation and antioxidant enzyme activities of Catharanthus roseus suspension cells. Plant Sci 168:607–613
  • Falleh H, Ksouri R, Chaieb K, Karray-Bouraoui N, Trabelsi N, Boulaaba M, Abdelly C (2008) Phenolic composition of Cynara cardunculus L. organs, and their biological activities. CR Biol 331:372–379
  • Foyer CH, Noctor G (2003) Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364
  • Hachicha M (2007) Les sols salés et leur mise en valeur en Tunisie. Sécheresse 18(1):45–50
  • Hachicha M, Mtimet A (1994) Les sols salés et la salinisation en Tunisie. Bulletin de la direction des sols 15:270–324
  • Hajlaoui H, Denden M, El Ayeb N (2009) Differential responses of two maize (Zea mays L.) varieties to salt stress: changes on polyphenols composition of foliage and oxidative damages. Ind Crop Prod 30:144–155
  • Hasegawa PH, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499
  • Hatano T, Kagawa H, Yasuhara T, Okuda T (1988) Two new flavonoids and other constituents in licorice root their relative astringency and radical scavenging effect. Chem Pharm Bull 36:2090–2097
  • Hernández JA, Almansa MS (2002) Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiol Plant 115:251–257
  • Hernández JA, Ferrer MA, Jiménez A, Barceló AR, Sevilla F (2001) Antioxidant systems and O₂⁻/H₂O₂ production in the apoplast of Pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol 127:817–831
  • Hernández M, Fernandez-Garcia N, Diaz-Vivancos P, Olmos E (2010) A different role for hydrogen peroxide and the antioxidative system under short and long salt stress in Brassica oleracea roots. J Exp Bot 61(2):521–535
  • Hirasa K, Takemasa M (1998) Spice science and technology. Marcel Dekker, New York
  • Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. California Agriculture Experiment Station, Berkley. Circular 347
  • Hodges M (2003) Oxidative stress and postharvest produce. In: Hodges M (ed) Postharvest oxidative stress in horticultural crops. Food Products Press, New York, pp 1–12
  • Kampfenkel K, Van Montagu M, Inzé D (1995) Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Anal Biochem 225:165–167
  • Karray-Bouraoui N, Ksouri R, Falleh H, Rabhi M, Abdul Jaleel C, Grignon C, Lachaâl M (2010) Effects of environment and development stage on phenolic content and antioxidant activities of Mentha pulegium L. J Food Biochem 34:79–89
  • Ksouri R, Megdiche W, Debez A, Falleh H, Grignon C, Abdelly C (2007) Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima. Plant Physiol Biochem 45:244–249
  • Lee DH, Kim YS, Lee CB (2001) The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.). J Plant Physiol 158:737–745
  • Maisuthisakul P, Suttajit M, Pongsawatmanit R (2007) Assessment of phenolic content and free radical-scavenging capacity of some Thai indigenous plants. Food Chem 10:1409–1418
  • Masood A, Ahmad Shah N, Zeeshan M, Abraham G (2006) Differential response of antioxidant enzymes to salinity stress in two varieties of Azolla (Azolla pinnata and Azolla filiculoides). Environ Exp Bot 58:216–222
  • Mittal R, Dubey RS (1991) Behaviour of peroxidases in rice: changes in enzyme activity and isoforms in relation to salt tolerance. Plant Physiol Biochem 29(1):31–40
  • Munns R, Tester M (2008) Mechanisms of salt tolerance. Annu Rev Plant Biol 59:651–681
  • Naczk M, Shahidi F (2004) Extraction and analysis of phenolics in food. J Chromatogr 1054:95–111
  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880
  • Namiki M (1990) Antioxidants/antimutagens in food. CRC Crit Rev Food Sci Nutr 29:273–300
  • Navari-Izzo F, Quartacci MF, Pinzino C, Dalla vecchia F, Sgherri C (1998) Thylakoid-bound and stromal antioxidative enzymes in wheat treated with excess copper. Physiol Plant 104:630–638
  • Navarro JM, Flores P, Garrido C, Martinez V (2006) Changes in the contents of antioxidants compounds in pepper fruits at different ripening stages, as affected by salinity. Food Chem 96:66–73
  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279
  • Okamura M (1980) An improved method for determination of L-ascorbic and L-dehydroascorbic acid in blood plasma. Clin Chim Acta 103:259–268
  • Parida AK, Das AB, Mohanty P (2004) Investigations on the antioxidative defence responses to NaCl stress in amangrove, Bruguiera parviflora: differential regulations of isoforms of some antioxidative enzymes. Plant Growth Regul 42:213–226
  • Premchandra GS, Saneoka H, Fujita K, Ogata S (1992) Leaf water relations, osmotic adjustment, cell membrane stability, epicuticularwax load and growth as affected by increasing water deficits in Sorghum. J Exp Bot 43:1569–1576
  • Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 269:337–341
  • Rozema J, Van Diggelen J (1991) A comparative study of growth and photosynthesis of four halophytes in response to salinity. Acta Oecol 12:673–681
  • Sairam RK, Srivastava GC (2002) Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Sci 162: 897–904
  • Singleton VL, Rosi JA (1965) Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. Am J Oenol Viticult 16:144–158
  • Smirnoff N (2005) Antioxidants and reactive oxygen species in plants. Blackwell, Oxford Tester M, Davenport R (2003) Na⁺ tolerance and Na⁺ transport in higher plants. Ann Bot 91:503–527
  • Trabelsi N, Megdiche W, Ksouri R, Falleh H, Oueslati S, Bourgou S, Hajlaoui H, Abdelly C (2010) Solvent effects on phenolic contents and biological activities of the halophyte Limoniastrum monopetalum leaves. LWT Food Sci Technol 43:632–639
  • Vallejos CE (1983) Enzyme activity staining. In: Tanksley SD, Orton TJ (eds) Isozymes in plant genetics and breeding (part A). Elsevier, Amsterdam, pp 469–516
  • Wahid A, Ghazanfar A (2006) Possible involvement of some secondary metabolites in salt tolerance of sugarcane. J Plant Physiol 163:723–730
  • Woodburry W, Spencer AK, Stahman MA (1971) An improved procedure using ferricyanide for detecting catalase isoenzymes. Anal Biochem 44:301–305
  • Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25:131–139
Uwagi
PL
Rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-da994ef5-f85a-4215-aac4-ed0ac787e83e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.