Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 16 | 1 |
Tytuł artykułu

Seansonal bat activity in relation to distance to hedgerows in an agricultural landscape in central Europe and implications for wind energy development

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bat activity is often concentrated near linear and edge landscape structures such as hedgerows, but information about seasonal and species-specific bat activity near hedges is scarce despite their abundance in the cultural landscapes of central Europe. Exact knowledge on animals' habitat use, however, is key to effective landscape planning to avoid human-wildlife-conflicts, such as the construction of wind turbines in areas with high bat activity that may result in bat fatalities. We measured bat activity in relation to distance to hedgerows in an agricultural landscape in northeastern Germany. We recorded bat echolocation calls at ground level at 0, 50, 100 and 200 m distances from hedges at five sites during three nights in spring (April to June) and three nights in summer (July to October) at each site. For all bat species we found the overall activity to be similar between seasons, with the highest activity near the hedges, but with considerable variation in species-specific spatial activity patterns between spring and summer. While the genus Myotis and Pipistrellus pipistrellus were mostly active close to the hedges at a similar intensity over the entire study period (i.e. 84% and 86% of all bat passes, respectively), Nyctalus noctula and Pipistrellus nathusii showed generally less pronounced concentration of activity near the hedges, and increased activity away from the hedges in summer. Similarly, Pipistrellus pygmaeus showed decreased activity away from the hedges during both seasons, but with reduced activity near the hedges in summer. The observed behavioural changes in activity in relation to distance to hedgerows are likely due to migration or the bats foraging for different prey between seasons. Our findings are highly relevant for landscape planning and distance recommendations for the construction of wind turbines linked to their potential threat for bats.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
16
Numer
1
Opis fizyczny
p.65-73,fig.,ref.
Twórcy
autor
  • Estacion Biologica de Donana (CSIC), c/Americo Vespucio s/n, 41092 Sevilla, Spain
autor
  • Department of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
autor
  • K and S Environmental Consult, Berlin, Germany
autor
  • Berlin School of Mind and Brain, Humboldt University, Berlin, Germany
autor
  • Faculty of Agriculture/Landscape Management, Dresden University of Applied Sciences HTW Dresden, Dresden, Germany
Bibliografia
  • 1. E. Arnett , W. K. Brown , W. P. Erickson , J. K. Fiedler , B. L. Hamilton , T. H. Henry , A. Jain , G. D. Johnson , J. Kerns , R. R. Koford , et al. 2008. Pat terns of bat fatalities at wind energy facilities in North America. Journal of Wildlife Management, 72: 61–78. Google Scholar
  • 2. A. M. Adams , M. K. Jantzen , R. M. Hamilton , and M. B. Fenton . 2012. Do you hear what I hear? Implications of detector selection for acoustic monitoring of bats. Methods in Ecology and Evolution, 3: 992–998. Google Scholar
  • 3. R. M. Barclay , E. F. Baerwald , and J. C. Gruver . 2007. Variation in bat and bird fatalities at wind energy facilities: assessing the effects of rotor size and tower height. Canadian Journal of Zoology, 85: 381–387. Google Scholar
  • 4. B. Bolker , H. Skaug , A. Magnusson , and A. Nielsen . 2012. Getting started with the glmmADMB package. Available at glmmadmb.r-forge.r-project.org/glmmADMB.pdf. Google Scholar
  • 5. K. L. Boughey , I. R. Lake , K. A. Haysom , and P. M. Dolman . 2011. Improving the biodiversity benefits of hedgerows: How physical characteristics and the proximity of foraging habitat affect the use of linear features by bats. Biological Conservation, 144: 1790–1798. Google Scholar
  • 6. J. Collins , and G. Jones . 2009. Differences in bat activity in relation to bat detector height: implications for bat surveys at proposed windfarm sites. Acta Chiropterologica, 11: 343–350. Google Scholar
  • 7. I. Davidson-Watts , and G. Jones . 2006. Differences in foraging behaviour between Pipistrellus pipistrellus (Schreber, 1774) and Pipistrellus pygmaeus (Leach, 1825). Journal of Zoology (London), 268: 55–62. Google Scholar
  • 8. N. C. Downs , and P. A. Racey . 2006. The use by bats of habitat features in mixed farmland in Scotland. Acta Chiropterologica, 8: 169–185. Google Scholar
  • 9. T. Dürr and L. Bach . 2004. Fledermäuse als Schlagopfer von Windenergieanlagen — Stand der Erfahrungen mit Einblick in die bundesweite Fundkartei. Bremer Beiträge für Naturkunde und Naturschutz, 7: 253–264. Google Scholar
  • 10. A. C. Entwistle , P. A. Racey , and J. R. Speakman . 1996. Habitat exploitation by a gleaning bat, Plecotus auritus. Philosophical Transactions of the Royal Society, 351B: 921–931. Google Scholar
  • 11. J. Hillen , T. Kaster , J. Pahle , A. Kiefer , O. Elle , E. M. Grie Beler , and M. Veith . 2011. Sex-specific habitat selection in an edge habitat specialist, the western barbastelle bat. Annales Zoologici Fennici, 48: 180–190. Google Scholar
  • 12. E. K. Kalko , and H.-U. Schnitzler . 1993. Plasticity in echolocation signals of European pipistrelle bats in search flight: implications for habitat use and prey detection. Behavioral Ecology and Sociobiology, 33: 415–428. Google Scholar
  • 13. A. Kepel , M. Ciechanowski , and R. Jaros . 2011. Wytyczne dotyczące oceny oddziaływania elektrowni wiatrowych na nietoperze [Guidelines for impact assessments for bats concerning wind farms]. Generalna Dyrekcja Ochrony Środowiska (GDOŚ), Warszawa. Google Scholar
  • 14. D. Krull , A. Schumm , W. Metzner , and G. Neuweiler . 1991. Foraging areas and foraging behavior in the notch-eared bat, Myotis emarginatus (Vespertilionidae). Behavioural Ecology and Sociobiology, 28: 247–253. Google Scholar
  • 15. T. H. Kunz , E. B. Arnett , W. P. Erickson , A. R. Hoar , G. D. Johnson , R. P. Larkin , M. D. Strickland , R. W. Thresher , and M. D. Tuttle . 2007. Ecological impacts of wind energy development on bats: questions, research needs, and hypotheses. Frontiers in Ecology and Environment, 5: 315–324. Google Scholar
  • 16. G. Lesiński 2008. Linear landscape elements and bat casualties on roads — an example. Annales Zoologici Fennici, 45: 277–280. Google Scholar
  • 17. C. V. Long , J. A. Flint , and P. A. Lepper . 2011. Insect attraction to wind turbines: does colour play a role? European Jour nal of Wildlife Research, 57: 323–331. Google Scholar
  • 18. LUGV (Landesamt Für Umwelt, Gesundheit und Verbraucher Schutz). 2013. Bat casualties at wind turbines in Germany — Daten aus der zentralen Fundkartei der Staatlichen Vo gelschutzwarte im Landesumweltamt Brandenburg. Zentra le Fundkartei über Anflugopfer an Windenergie an lagen (WEA). http://www.mugv.brandenburg.de/cms/detail.php/bb2.c.451792.de. Google Scholar
  • 19. I. J. Mackie , and P. A. Racey . 2007. Habitat use varies with reproductive state in noctule bats (Nyctalus noctula): implications for conservation. Biological Conservation, 140: 70–77. Google Scholar
  • 20. U. Marckmann , and V. Runkel . 2009. Automatische Rufanalyse: Die automatische Rufanalyse mit dem batcorder-System. Version 1.0, 29 pp. http://www.ecoobs.de/downloads/Automatische-Rufanalyse-1-0.pdf. Google Scholar
  • 21. M. J. Maudsley 2000. A review of the ecology and conservation of hedgerow invertebrates in Britain. Journal of Environmental Management, 60: 65–76. Google Scholar
  • 22. Ministry for Environment, Health and Consumer Protection of Brandenburg, Germany. 2011. Decree on wind energy of 1.1.2011 concerning the designation of areas suitable for wind energy, § 8 Abs. 7 — Landuse Planning Act (ROG) Brandenburg, Germany, 2011. Google Scholar
  • 23. G. Neuweiler 1989. Foraging ecology and audition in echolocating bats. Trends in Ecology & Evolution, 4: 160–166. Google Scholar
  • 24. B. Nicholls , and P. Racey . 2006. Habitat selection as a mechanism of resource partitioning in two cryptic bat species Pipistrellus pipistrellus and Pipistrellus pygmaeus. Eco graphy, 29: 697–708. Google Scholar
  • 25. U. M. Norberg , and J. M. V. Rayner . 1987. Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philosophical Transactions of the Royal So ciety of London, 316B: 335–427. Google Scholar
  • 26. A. Piela 2010. Tierökologische Abstandskriterien bei der Erricht ung von Windenergieanlagen in Brandenburg (TAK) — Ein Beitrag zur Konfliktbewältigung im Spannungsfeld Vogel- und Fledermausschutz — Windenergie. Natur und Landschaft, 85: 51–61. Google Scholar
  • 27. K.A. Pollard and J. M. Holland. 2006. Arthropods within the woody element of hedgerows and their distribution pattern. Agricultural and Forest Entomology, 8: 203–211. Google Scholar
  • 28. A. Popa-Lisseanu , and C. C. Voigt . 2009. Bats on the move. Journal of Mammalogy, 90: 1283–1289. Google Scholar
  • 29. Prefet de Lorraine. 2012. Schéma régional climat air énergie de Lorraine. Available at http://www.srcae.lorraine.gouv.fr/. Google Scholar
  • 30. R Development Core Team. 2012. R: a language and environment for statistical computing. The R Foundation for Statistical Computing, Vienna, Austria. Available online at http://www.R-project.org/. Google Scholar
  • 31. J. M. Russ , and W. I. Montgomery . 2002. Habitat associations of bats in Northern Ireland: implications for conservation. Biological Conservation, 108: 49–58. Google Scholar
  • 32. D. Russo , and G. Jones . 2002. Identification of twenty-two bat species (Mammalia: Chiroptera) from Italy by analysis of time-expanded recordings of echolocation calls. Journal of Zoology (London), 258: 91–103. Google Scholar
  • 33. J. Rydell , L. Bach , M. J. Dubourg-Savage , M. Green , L. Rod Rigues , and A. Hedenström . 2010a. Bat mortality at wind turbines in northwestern Europe. Acta Chiropterologica, 12: 261–274. Google Scholar
  • 34. J. Rydell , L. Bach , M. J. Dubourg-Savage , M. Green , L. Rodrigues , and A. Hedenström . 2010b. Mortality of bats at wind turbines links to nocturnal insect migration? Euro pean Journal of Wildlife Research, 56: 823–827. Google Scholar
  • 35. A. Schaub , and H.-U. Schnitzler . 2007. Flight and echolocation behaviour of three vespertilionid bat species while commuting on flyways. Journal of Comparative Physiology, 193A: 1185–1194. Google Scholar
  • 36. H.-U. Schnitzler , C. F. Moss , and A. Denzinger . 2003. From spatial orientation to food acquisition in echolocating bats. Trends in Ecology and Evolution, 18: 386–394. Google Scholar
  • 37. K. Seiche , P. Endl , and M. Lein . 2008. Naturschutz und Landschaftspflege — Fleder mäuse und Windenergieanlagen in Sachsen 2006. Report to Sächsisches Landesamt für Umwelt und Geologie (LfUG). Abteilung Natur, Landschaft, Boden, Dresden, 62 pp. Google Scholar
  • 38. C. B. Shiel , R. E. Shiel , and J. S. Fairley . 1999. Seasonal changes in the foraging behaviour of Leisler's bats (Nyctalus leisleri) in Ireland as revealed by radio-telemetry. Journal of Zoology (London), 249: 347–358. Google Scholar
  • 39. H. Skaug , D. Fournier , A. Nielsen , A. Magnusson , and B. Bolker . 2013. Generalized linear mixed models using AD mode builder. R package version 0.7.7. Available at glmmadmb. r-forge.r-project.org. Google Scholar
  • 40. J. Teubner , D. Dolch , and G. Heise . 2008. Säugetierfauna des Landes Brandenburg — Teil 1: Fledermäuse. Naturschutz und Landschaftspflege in Brandenburg, Landesumweltamt Brandenburg, Potsdam, 2/3(17): 78–161. Google Scholar
  • 41. D. W. Thomas , and S. D. West . 1989. Sampling methods for bats. United States Forest Service General Technical Report. PNW, 243: 1–20. Google Scholar
  • 42. N. Vaughan , G. Jones , and S. Harris . 1997. Habitat use by bats (Chiroptera) assessed by means of a broad-band acoustic method. Journal of Applied Ecology, 34: 716–730. Google Scholar
  • 43. B. Verboom , and H. Huitema . 1997. The importance of linear landscape elements for the pipistrelle Pipistrellus pipistrellus and the serotine bat Eptesicus serotinus. Landscape Ecology, 12: 117–125. Google Scholar
  • 44. B. Verboom , and K. Spoelstra . 1999. Effects of food abundance and wind on the use of tree lines by an insectivorous bat, Pipistrellus pipistrellus. Canadian Journal of Zoology, 77: 1393–1401. Google Scholar
  • 45. A. L. Walsh , and S. Harris . 1996. Foraging habitat preferences of verpertilionid bats in Britain. Journal of Applied Ecology, 33: 508–518. Google Scholar
  • 46. M. R. Zeale , I. Davidson-Watts , and G. Jones . 2012. Home range use and habitat selection by barbastelle bats (Barbastella barbastellus): implications for conservation. Journal of Mammalogy, 93: 1110–1118. Google Scholar
  • 47. A. F. Zuur , A. A. Savaliev , and E. N. Ieno . 2012. Zero inflated models and generalized linear mixed models with R. High land Statistics Ltd., Newburgh, 336 pp. Google Scholar
Uwagi
Rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-da74f894-8ca2-4c93-8785-098d3dcf465c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.