Arkadiusz Osypiuk
Tomasz Grudniewski

JAVA INTERFACES FOR XML DOCUMENT HANDLING

Key words: Java, XML, Java interfaces, SAX, DOM, JAXP

Introduction

Java is commonly thought to have the widest range of API interfaces for
XML handling. It is Java which sets standards for the manner of handling
XML from the application level, although such languages as C, C++ and Perl
are catching up. Currently, there are three major leading API interfaces for
XML handling:

e SAX (Simple API for XML)

e DOM (Document Object Model)

e JAXP (JAVA API for XML Parsing)

Seen from the application point of view, XML document processing can
be divided into two stages, shown in Fig. 1. These are: document processing
and analysing the data contained in it.

Fig. 1. An XML document processing cycle
from an application point of view

1. SAX (Simple API for XML)
SAX is a simple API interface for XML handling. To process XML data, it

employs structure-based event handling. At each stage, events which may

- 255 -



occur are defined. For example, SAX defines the interface org.xml.sax.Con-
tentHandler, which in turn defines the methods, such as startDocumenty)
and endElement(). Such an interface helps gain control over the relevant
stages of XML document processing. A similar interface has been created
for handling errors and lexical structures. A set of errors and warnings is
defined to help handle different situations that may occur when an XML
document is being processed, e.g. encountering an incorrect or incorrectly
formatted document. New behaviours may be added, which help handle
tasks associated with highly specific applications - all this within the XML
standard application.

1.1. How SAX works

The sequential model offered by SAX does not offer free access to an
XML document. When using the SAX, we take information on the XML
document when it is done by the parser and - like a parser - we lose the infor-
mation. When another element appears, information in the previous ele-
ment is inaccessible because the element has not yet been processed. When
the next element appears, we cannot go back to the previous one. Obviously,
we can retain information encountered while processing, but it may be
difficult to encode such special cases. An alternative could be provided by
creating a representation of an XML document in the memory, i.e. the DOM
model.

1.2. Limitations of SAX

Another task which is difficult to perform with the SAX interface is going
from one element to another, situated on the same level. Access to elements
through SAX is largely hierarchical and sequential. We get access to the
final element of a node, subsequently we go “up” the tree and then we again
go down to another element at the bottom of the hierarchy. There is no clear
reference to the hierarchy “level” on which we are at the moment. Although
levels can be identified by means of sophisticated counters, basically SAX is
not suited to such operations. It lacks an implemented concept of a sibling
element, the next element on the same level; it is also impossible to check
which elements are embedded in which.

2. DOM (Document Object Model)

DOM is an API interface for the Document Object Model. SAX only
provides access to data in an XML document, while DOM enables the user
to process data. An XML document in a DOM interface is represented as
a tree-like structure. Since such a way of representation has been known for
long, it is not difficult to search and process such structures from a progra-
mming language level. In a DOM interface, the entire XML document is
entered in memory and all the data are stored as nodes, which enables quick

- 256 -



access to specific parts of the document - everything is stored in memory as
long as a DOM tree exists. Particular nodes correspond to particular data
taken from the original document.

Unlike the SAX interface, the document object model has been develop-
ed in the W3C consortium. SAX is a public domain software, a result of long
discussion in the XML-dev mailing list, whereas DOM is a standard in itself,
like XML.

2.1. DOM application in Java

In order to be able to use the DOM in a specific programming language,
interfaces and classes should be applied and the DOM model itself should
be implemented. Since the applied methods are not specified in the DOM
specification, it was necessary to develop the language interfaces represent-
ing a conceptual structure of the DOM model - both for Java and for other
languages. The interfaces enable the user to process documents in the mann-
er described in the DOM specification (,Java and XML”, Helion, Brett
McLaughlin, 2003.).

Most processors do not independently generate DOM input data. To do
this, they use an XML parser, whose task is to generate a DOM tree. Therefo-
re, it is the XML parser rather than the XSLT processor that will have the
necessary DOM classes. Since by default Apache Xalan uses the Xerces
parser for the DOM model generation and processing, the DOM handling,
described below, will take place from the level of that tool.

2.2. How DOM works

In order to familiarise oneself with how the DOM model works, it is best
to show the way in which the Apache Xalan processor receives an XML
document in a DOM tree-like structure.

The DOM model does not define how a DOM tree is created. The authors
of the specification have focused on API structure and interfaces used for
manipulating the tree. There is considerable freedom of the DOM parser im-
plementation. Unlike in the SAX XMLReader class, which dynamically
loads the implementation, in DOM it is the programmer who has to openly
import and create a copy of DOM parser class of a specific manufacturer.
Shown below is a way of using DOM in a code fragment. The first thing is to
create DOM parser implementation (listing 1).

- 257 -



// Importuje parser DOM
import org.apache.xerces.parsers. DOMParser;
public class MyActionListener implements ActionListener {
public void actionPerformed(ActionEvent e) {
// Tworze egzemplarz implementacji parsera DOM
DOMParser parser = new DOMParser();
try {
parser.parse(path);
Document doc = parser.getDocument();
processNode(doc);
} catch (Exception €) {
System.out.println(,Biad w przetwarzaniu: , +
e.getMessage());

}
}

Listing 1. Creating implementation for the DOM parser DOM.

As is seen in the source code presented above, first the Apache Xerces
DOMParser class is imported and its copy is created. The DOM model
operation is focused on the output data from processing. The data cannot be
used until the entire document has been created and added to the do initial
tree structure. The processing output data, which are to be used by DOM
interfaces, have the form of a org.w3c.dom.Document. document. The object
acts as an “operation manual” for the tree into which the XML data have
been input. From the point of view of the element hierarchy, the object is
situated one level “above” the main element of an XML document. In other
words, each element of the input XML document is directly or indirectly
a child element against it.

In order to retain the standard interface in the SAX and DOM parsers,
the parse() method, seen in the code, is of the “void” type, like the one used
in the SAX model. Owing to it, the application can use a DOM and SAX
class parser interchangeably, but it implies the necessity to develop a new
method to get the Document object, which is the result of XML processing.
In the Apache Xerces parser, the method is called getDocument()(,/ava and
XML, Helion, Brett McLaughlin, 2003.).

2.3. The DOM tree

In order to show how one can go through the structure of a previously
obtained DOM object, it is best to take a initial Document type object and
process its every node and all its child nodes. In order to understand the
process principle, one should view the basic objects through which access to

- 258 -



XML data will be provided. A Dokument object has been described earlier
and presented in Fig. 2 with other basic interfaces of DOM objects (which
also shows interfaces used less frequently).

With these interfaces, it is possible to process data within the DOM tree.
Particular attention should be paid to the Node interface, as this is the basis
for all the others. It is noteworthy that it is possible to develop a method
which takes the node, recognises the DOM structure of the node and pro-
cesses the node in a suitable manner. In this way, the entire DOM tree can
be processed with one method. When the node has been processed, availa-
ble methods can be used to go to the next sibling element, taking attributes
(if it is an element) and handling any possible special cases. Subsequently,
performing iteration along child nodes, the method is recurrently started on
each of the nodes. It is the simplest and clearest method of DOM tree
handling.

O

Document

o Sm——
DocumentFraament
O—
DocumentType O
O Node

Processinalnstruction

_____ O

1
: CharacterData

Comment O 777 e O—
+ Element

Text ?’ """" e
' Attr
O O
CDATASection EntitvReference

Ot
Entity

o—

Notation

Fig. 2. Presentation of the basic interfaces and classes of DOM Level 2.

Since the Document itself is a Node of the DOM model, it can be trans-
ferred unchanged to the processing method. Before a skeleton of such a me-
thod has been created, relevant importing instructions have to be added and
the taking and processing method for the DOM Node object has to be

declared (see listing 2):

- 259 -



import org.w3c.dom.Document;
import org.w3c.dom.Node;
// Import parsera DOM
import org.apache.xerces.parsers. DOMParser;
public void processNode(Node node) {
// Rozpoznanie typu wezla
// Przetworzenie wezla
// Przetworzenie rekurencyjne wezléw potomnych

}
Listing 2. Declaration of packages and the DOM tree processing method.

When the method skeleton is in the right place, the method can be run on
the initial object Document and you can recursively process the structure until
the entire tree has been processed. It is possible thanks to the fact that the
Document is a part of the common Node interface.

Finally, a certain drawback of the DOM model should be mentioned. As
the entire document is entered in memory, system resources run out quick-
ly, often causing applications to slow down or even preventing them from
functioning correctly. Using the DOM model requires engaging the amount
of memory in proportion to the size and complexity of the XML document.
There is no way in which the demand for memory can be reduced. More-
over, the transformations themselves burden the system on which they are
run, which in combination with the memory-related requirements may
result in having to use a different way of processing an XML document. If
a small document, below one MB, is processed, any problems are unlikely.
Larger documents — technical handbooks or entire books - may use up the
system resources and affect the application efficiency. Therefore, the choice
of the appropriate interface for XML document processing should be made
carefully. The choice of the best solution for a specific program project will
be decided by the application characteristics.

3. JAXP (Java Api for XML Parsing).

JAXP is a Java interface for XML processing, developed by Sun Micro-
systems. The aim of the interface is to ensure coherence between the SAX
and DOM interfaces. It is not meant as competition for them, nor has it been
developed to become their successor. It just offers simplified methods aimed
at facilitating the use of Java interfaces in XML document handling. It is
compatible with the SAX and DOM specifications and with recommenda-
tions regarding namespaces. JAXP does not define how SAX or DOM inter-
faces should behave, but it provides a standard access layer for all the XML
parsers from Java level.(,Java and XML” published by Helion, Brett
McLaughlin, 2003)

- 260 -



JAXP is expected to evolve as the SAX and DOM interfaces are modified.
One can also forecast that it will ultimately take its place among other Sun
specifications, as both the Tomcat servlet mechanism and the EIB specifica-
tion require XML-formatted files for configuration and implementation.

Summary

Two important trends have emerged recently: XML stream processing
and XML object mapping. Both seem to be very important for its future. The
first is like to replace the SAX model in a longer perspective, while the latter
will take the place of DOM. When this will take place depends mainly on
how long software manufacturers will support these solutions and to what
extent they will be developed and improved.

Abstract

This paper discusses the basic Java interfaces, which are used for XML
document handling. Three interfaces have been discussed: SAX - used for
sequential document processing, DOM - document object model and JAXP
- an interface which imparts coherence to the SAX and DOM techniques.
The paper presents their major features, differences and practical applica-
tions.

References

1. Arciniegas F., XML. Kompendium programisty, Helion, 2002.

2. Eckel B., Thinking in Java, Helion, 2001.

3. McLaughlin B., Java and XML, Helion, 2003.

4. North S., XML. dla kazdego, Helion, 2000.

5. Rusty H., XML. Ksigega eksperta, Helion, 2001.

6. Traczyk T., XML - stan obecny i trendy rozwojowe, IX Konferencja
PLOUG, October 2003.

- 261 -



