Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2020 | 79 | 1 |
Tytuł artykułu

Morphometry and topography of the coronary ostia in the European bison

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Background: Coronary vessels have been widely studied in many species of domestic and wild mammals. However, there are no available literature reports describing the morphology and morphometry of the coronary ostia of the European bison (Bison bonasus). The aim of this study was to measure the area of the coronary ostia and assess their localisation in the coronary sinuses of the aortic root in the European bison. Materials and methods: The study material comprised 27 hearts from European bison of both sexes (16 males and 11 females), from 3 months to 26 years old, inhabiting the Bialowieza Forest (Bialowieza National Park, Poland). The animals were divided into two age groups: ≤ 5 years (group I) and > 5 years (group II). Results: In all the studied European bison, the aortic valve consisted of three semilunar leaflets, left, right and septal. The ostia of both coronary arteries were located beneath the sinotubular junction. The dimensions of the left coronary ostium were larger than those of the right coronary ostium. They were longer by on average 4.5 mm (95% confidence interval [CI] 3.5–5.6 mm), they were wider by on average 1.6 mm (95% CI 1.0–2.2 mm) and they had a larger area by on average 31.6 mm² (95% CI 22.7–40.5 mm²). This was evident both in young and in adult bison. After adjusting for age, there were no differences in the ostia dimensions between males and females. There were no differences in the structure of the left and right coronary arteries in nine animals. In the remaining 18 animals, there were variations in the morphology of the coronary ostia or additional ostia. Conclusions: Because of the anatomical similarity between the European bison and other ruminants, the results of this study can be applied to the other species including endangered ones. (Folia Morphol 2020; 79, 1: 105–112)
Słowa kluczowe
Wydawca
-
Czasopismo
Rocznik
Tom
79
Numer
1
Opis fizyczny
p.105-112,fig.,ref.
Twórcy
autor
  • Department of Morphological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
autor
  • Chair of Anatomy and Histology, Department of Normal and Clinical Anatomy, Medical University of Lodz, Lodz, Poland
  • Department of Animal Physiology and Biostructure, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
  • Department of Animal Physiology and Biostructure, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
autor
  • Department of Morphological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
autor
  • Laboratory of Veterinary Epidemiology and Economics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
Bibliografia
  • 1. Anderson RH, Razavi R, Taylor AM. Cardiac anatomy revisited. J Anat. 2004; 205(3): 159–177, doi: 10.1111/j.0021-8782.2004.00330.x, indexed in Pubmed: 15379923.
  • 2. Barszcz K, Kupczyńska M, Janczyk P, et al. Venous drainage of the heart in the domestic cat. Med Weter. 2016; 72(3): 186–190.
  • 3. Barszcz K, Kupczyńska M, Klećkowska-Nawrot J, et al. Arterial coronary circulation in cats. Med Weter. 2014; 70(6): 373–377.
  • 4. Barszcz K, Kupczyńska M, Klećkowska-Nawrot J, et al. Morphology of Coronary Ostia in Domestic Shorthair Cat. Anat Histol Embryol. 2016; 45(2): 81–87, doi: 10.1111/ahe.12174, indexed in Pubmed: 25639274.
  • 5. Barszcz K, Kupczyńska M, Polguj M, et al. Morphometry of the coronary ostia and the structure of coronary arteries in the shorthair domestic cat. PLoS One. 2017; 12(10): e0186177, doi: 10.1371/journal.pone.0186177, indexed in Pubmed: 29020103.
  • 6. Barszcz K, Kupczyńska M, Wąsowicz M, et al. Patterns of the arterial vascularization of the dog’s heart. Med Weter. 2013; 69(9): 531–534.
  • 7. Barszcz K, Przespolewska H, Olbrych K, et al. The morphology of the adrenal gland in the European bison (Bison bonasus). BMC Vet Res. 2016; 12(1): 161, doi: 10.1186/s12917-016-0783-8, indexed in Pubmed: 27487830.
  • 8. Barszcz K, Szaluś-Jordanow O, Czopowicz M, et al. Topography of coronary arteries and their ramifications in the goat. Biologia. 2019; 74(6): 683–689, doi: 10.2478/s11756-019-00208-z.
  • 9. Bartyzel BJ, Charuta A, Barszcz K, et al. Morphology of the aortic valve of Gallus gallus f. domestica. Bull Vet Inst Pulawy. 2009; 53: 147–151.
  • 10. Besoluk K, Tipirdamaz S. Comparative macroanatomic investigations of the venous drainage of the heart in Akkaraman sheep and Angora goats. Anat Histol Embryol. 2001; 30(4): 249–252, doi: 10.1046/j.1439-0264.2001.00327.x, indexed in Pubmed: 11534331.
  • 11. Bhimalli S, Dixit D, Siddibhavi M, et al. study of variations in coronary arterial system in cadaveric human heart. World J Sci Technol. 2011; 1(5): 30–35.
  • 12. Cardo M, Fernández B, Durán AC, et al. Anomalous origin of the left coronary artery from the dorsal aortic sinus and its relationship with aortic valve morphology in Syrian hamsters. J Comp Pathol. 1995; 112(4): 373–380, doi: 10.1016/s0021-9975(05)80018-0, indexed in Pubmed: 7593759.
  • 13. Cartier R, Ranga A, Mongrain R. Aortic root reconstruction: from principles to numerical modeling. Can J Cardiol. 2005; 21(12): 1071–1076, indexed in Pubmed: 16234892.
  • 14. Cavalcanti JS, de Melo NC, de Vasconcelos RS. Morphometric and topographic study of coronary ostia. Arq Bras Cardiol. 2003; 81(4): 359–62, 355, doi: 10.1590/s0066-782x2003001200003, indexed in Pubmed: 14666278.
  • 15. Crick SJ, Sheppard MN, Ho SY, et al. Anatomy of the pig heart: comparisons with normal human cardiac structure. J Anat. 1998; 193 ( Pt 1): 105–119, doi: 10.1046/j.1469-7580.1998.19310105.x, indexed in Pubmed: 9758141.
  • 16. Durán AC, Arqué JM, Fernández B, et al. Separate origin of the main components of the left coronary artery in Syrian hamsters (Mesocricetus auratus). J Vet Med A Physiol Pathol Clin Med. 2007; 54(6): 297–301, doi: 10.1111/j.1439-0442.2007.00928.x, indexed in Pubmed: 17650149.
  • 17. Durán AC, Fernández MC, Fernández B, et al. Number of coronary ostia in Syrian hamsters (Mesocricetus auratus) with normal and anomalous coronary arteries. Anat Histol Embryol. 2007; 36(6): 460–465, doi: 10.1111/j.1439-0264.2007.00788.x, indexed in Pubmed: 18021357.
  • 18. Erdoğan S, Lima M, Pérez W. Inner ventricular structures and valves of the heart in white rhinoceros (Ceratotherium simum). Anat Sci Int. 2014; 89(1): 46–52, doi: 10.1007/s12565-013-0199-5, indexed in Pubmed: 23979858.
  • 19. Frackowiak H, Jasiczak K, Pluta K, et al. Coronary arteries of the roe deer (Capreolus capreolus; Linnaeus 1758) heart. Pol J Vet Sci. 2007; 10(2): 105–108, indexed in Pubmed: 17882934.
  • 20. Ghazi SR, Tadjalli M. Coronary arterial anatomy of the onehumped camel (Camelus dromedarius). Vet Res Commun. 1993; 17(3): 163–170, doi: 10.1007/bf01839161, indexed in Pubmed: 8284892.
  • 21. Harikrishnan S, Bhat A, Tharakan JM. Double right coronary artery. Int J Cardiol. 2001; 77(2-3): 315–316, doi: 10.1016/s0167-5273(00)00445-9, indexed in Pubmed: 11393136.
  • 22. Islam MN, Khan ZI, Khan SR, et al. Morphometry of the intercommissural distances and other structures of the aortic valve of bovine heart. Mymensingh Med J. 2006; 15(2): 153–158, doi: 10.3329/mmj.v15i2.35, indexed in Pubmed: 16878096.
  • 23. Kaur D, Singh K, Nair N, et al. Morphology and morphometry of coronary ostia in South Indian adult human cadaveric hearts. Int J Biol Med Res. 2012; 3(3): 2169–2171.
  • 24. Kawase I, Ozaki S, Yamashita H, et al. Aortic valve reconstruction of unicuspid aortic valve by tricuspidization using autologous pericardium. Ann Thorac Surg. 2012; 94(4): 1180–1184, doi: 10.1016/j.athoracsur.2012.05.016, indexed in Pubmed: 22771488.
  • 25. Kupczyńska M, Barszcz K, Olbrych K, et al. Coronary arteries of the European bison (Bison bonasus). Acta Vet Scand. 2015; 57: 82, doi: 10.1186/s13028-015-0173-4, indexed in Pubmed: 26608615.
  • 26. Loukas M, Bilinsky E, Bilinsky S, et al. The anatomy of the aortic root. Clin Anat. 2014; 27(5): 748–756, doi: 10.1002/ca.22295, indexed in Pubmed: 24000000.
  • 27. Misfeld M, Sievers HH. Heart valve macro- and microstructure. Philos Trans R Soc Lond B Biol Sci. 2007; 362(1484): 1421–1436, doi: 10.1098/rstb.2007.2125, indexed in Pubmed: 17581807.
  • 28. Nie XM, Zhou Yj, Xie Y, et al. [Effect of stent coated with diallyl trisulfide on endothelial structure and function after coronary injury: experiment with dogs]. Zhonghua Yi Xue Za Zhi. 2006; 86(16): 1125–1128, indexed in Pubmed: 16796841.
  • 29. Nikolić V, Teofilovski-Parapid G, Stanković G, et al. Third coronary artery in monkey heart. Acta Vet Hung. 2004; 52(3): 253–257, doi: 10.1556/AVet.52.2004.3.1, indexed in Pubmed: 15379440.
  • 30. Noestelthaller A, Probst A, König HE. Branching patterns of the left main coronary artery in the dog demonstrated by the use of corrosion casting technique. Anat Histol Embryol. 2007; 36(1): 33–37, doi: 10.1111/j.1439-0264.2006.00711.x, indexed in Pubmed: 17266665.
  • 31. Nomina Anatomica Veterinaria sixth edition. Prepared by the International Committee on Veterinary Gross Anatomical Nomenclature (I.C.V.G.A.N.) Published by the Editorial Committee Hanover (Germany), Ghent (Belgium), Columbia, MO (U.S.A.), Rio de Janeiro (Brazil). 2017 With permission of the World Association of Veterinary Anatomists (W.A.V.A.).
  • 32. Olbrych K, Barszcz K, Bartyzel B, et al. Histological and morphometric study of the uterus of the lowland bison. Med Weter. 2017; 73(10): 661–665, doi: 10.21521/mw.5782.
  • 33. Ozgel O, Haligur AC, Dursun N, et al. The macroanatomy of coronary arteries in donkeys (Equus asinus L.). Anat Histol Embryol. 2004; 33(5): 278–283, doi: 10.1111/j.1439-0264.2004.00548.x, indexed in Pubmed: 15352880.
  • 34. Parliament of the Republic of Poland: Ustawa z dnia 15 stycznia 2015 r. o ochronie zwierząt wykorzystywanych do celów naukowych lub edukacyjnych. Dz.U. 2015 r. poz. 266. www.dziennikustaw.gov.pl/du/2015/266/D2015000026601.pdf.
  • 35. Pérez W, Katz H, Lima M. Gross heart anatomy of Arctocephalus australis (Zimmerman, 1783). Anat Sci Int. 2008; 83(1): 6–10, doi: 10.1111/j.1447-073X.2007.00189.x, indexed in Pubmed: 18402082.
  • 36. Rajendra RS, Brady AG, Parks VL, et al. The normal and abnormal owl monkey (Aotus sp.) heart: looking at cardiomyopathy changes with echocardiography and electrocardiography. J Med Primatol. 2010; 39(3): 143–150, doi: 10.1111/j.1600-0684.2010.00403.x, indexed in Pubmed: 20149027.
  • 37. Ruvolo G, Fattouch K. Aortic valve-sparing root replacement from inside the aorta using three Dacron skirts preserving the native Valsalva sinuses geometry and stabilizing the annulus. Interact Cardiovasc Thorac Surg. 2009; 8(2): 179–181, doi: 10.1510/icvts.2008.184200, indexed in Pubmed: 19019850.
  • 38. Sahni D, Kaur GD, Jit H, et al. Anatomy & distribution of coronary arteries in pig in comparison with man. Indian J Med Res. 2008; 127(6): 564–570, indexed in Pubmed: 18765875.
  • 39. Sirikonda P, Sreelatha S. Measurements and location of coronary ostia. Int Biol Med Res. 2012; 3(4): 2489–2496.
  • 40. Smodlaka H, Henry RW, Schumacher J, et al. Macroscopic anatomy of the heart of the ringed seal (Phoca hispida). Anat Histol Embryol. 2008; 37(1): 30–35, doi: 10.1111/j.1439-0264.2007.00791.x, indexed in Pubmed: 18197897.
  • 41. Szymczyk K, Polguj M, Szymczyk E, et al. Assessment of aortic valve in regard to its anatomical variants morphology in 2053 patients using 64-slice CT retrospective coronary angiography. BMC Cardiovasc Disord. 2016; 16: 89, doi: 10.1186/s12872-016-0261-z, indexed in Pubmed: 27165721.
  • 42. Szymczyk K, Polguj M, Szymczyk E, et al. Prevalence of congenital coronary artery anomalies and variants in 726 consecutive patients based on 64-slice coronary computed tomography angiography. Folia Morphol. 2014; 73(1): 51–57, doi: 10.5603/FM.2014.0007, indexed in Pubmed: 24590523.
  • 43. Teofilovski-Parapid G, Kreclović G. Coronary artery distribution in Macaca fascicularis (Cynomolgus). Lab Anim. 1998; 32(2): 200–205, doi: 10.1258/002367798780600007, indexed in Pubmed: 9587903.
  • 44. Teofilovski-Parapid G, Nikolić V, Ranković A, et al. [Coronary arteries in the Macaca fascicularis monkey]. Srp Arh Celok Lek. 1993; 121(8-12): 117–119, indexed in Pubmed: 7725149.
  • 45. Warraich HJ, Matyal R, Bergman R, et al. Impact of aortic valve replacement for aortic stenosis on dynamic mitral annular motion and geometry. Am J Cardiol. 2013; 112(9): 1445–1449, doi: 10.1016/j.amjcard.2013.06.013, indexed in Pubmed: 23891429.
  • 46. Węgrzyn M. Blood-vascular system in European bison. 1968; 13(12): 177–218.
  • 47. Węgrzyn M, Kupczyńska M. Bisoniana XCI. Shape, size and weight of the heart In European bison. Acta Theriol. 1986; 31: 327–342, plate 8, doi: 10.4098/at.arch.86-30.
  • 48. Yuan G, Ma J, Ye W, et al. Macroanatomy of coronary arteries in Bactrian camel (Camelus bactrianus). Vet Res Commun. 2009; 33(4): 367–377, doi: 10.1007/s11259-008-9185-0, indexed in Pubmed: 19011985.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-d3402951-5960-4776-82f3-3ef83e110641
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.