Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 18 | 3 |
Tytuł artykułu

The protective effect of crocin on the amyloid fibril formation of abeta42 peptide in vitro

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Aβ is the main constituent of the amyloid plaque found in the brains of patients with Alzheimer’s disease. There are two common isoforms of Aβ: the more common form, Aβ40, and the less common but more amyloidogenic form, Aβ42. Crocin is a carotenoid from the stigma of the saffron flower and it has many medicinal properties, including antioxidant effects. In this study, we examined the potential of crocin as a drug candidate against Aβ42 amyloid formation. The thioflavin T-binding assay and electron microscopy were used to examine the effects of crocin on the extension and disruption of Aβ42 amyloids. To further investigate the relationship between crocin and Aβ42 structure, we analyzed peptide conformation using the ANS-binding assay and circular dichroism (CD) spectroscopy. An increase in the thioflavin T fluorescence intensity upon incubation revealed amyloid formation in Aβ42. It was found that crocin has the ability to prevent amyloid formation by decreasing the fluorescence intensity. Electron microscopy data also indicated that crocin decreased the amyloid fibril content of Aβ. The ANS-binding assay showed that crocin decreased the hydrophobic area in incubated Aβ42. CD spectroscopy results also showed that the peptide undergoes a structural change to α-helical and β-turn. Our study shows that the anti-amyloidogenic effect of crocin may be exerted not only by the inhibition of Aβ amyloid formation but also by the disruption of amyloid aggregates. Therefore, crocin could be essential in the search for therapies inhibiting aggregation or disrupting aggregation.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
18
Numer
3
Opis fizyczny
p.328-339,fig.,ref.
Twórcy
autor
  • Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
  • Department of Clinical Biochemistry, Faculty of Medical Science, Tarbiat Modares University, Teheran, Iran
autor
  • Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
  • Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
Bibliografia
  • 1. Burns, A., Byrne, E.J. and Maurer, K. Alzheimer’s disease. Lancet 360 (1998) 163-165.
  • 2. Brookmeyer, R., Gray, S. and Kawas, C. Projections of Alzheimer’s disease in the United States and the public health impact of delaying disease onset. Am. J. Public Health 88 (1998) 1337-1342.
  • 3. Khalil, Z., Poliviou, H., Maynard, C.J., Beyreuther, K., Masters, C.L. and Li, Q.X. Mechanisms of peripheral microvascular dysfunction in transgenic mice overexpressing the Alzheimer’s disease amyloid Abeta protein. J. Alzheimer’s Dis. 4 (2002) 467-478.
  • 4. Waldemar, G., Dubois, B., Emre, M., Georges, J., McKeith, I.G., Rossor, M., Scheltens, P., Tariska, P. and Winblad, B. Recommendations for the diagnosis and management of Alzheimer’s disease and other disorders associated with dementia: EFNS guideline. Eur. J. Neurol. 14 (2007) e1-e26.
  • 5. Veeranna, Kaji, T., Boland, B., Odrljin, T., Mohan, P., Basavarajappa, B.S., Peterhoff, C., Cataldo, A., Rudnicki, A., Amin, N., Li, B.S., Pant, H.C., Hungund, B.L., Arancio, O. and Nixon, R.A. Calpain mediates calcium-induced activation of the Erk1,2 MAPK pathway and cytoskeletal phosphorylation in neurons: relevance to Alzheimer's disease. Am. J. Pathol. 165 (2004) 795-805.
  • 6. Thomas, P. and Fenech, M. A review of genome mutation and Alzheimer’s disease. Mutagenesis 22 (2007) 15-33.
  • 7. Bajić, P.V., Su, B., Lee, H., Kudo, W., Siedlak, L.S., Živković, L., SpremoPotparević, B., Djelic, N., Milicevic, Z., Singh, K.A., Fahmy, M.L., Wang, X., Smith, A.M. and Zhu, X. Mislocalization of CDK11/PITSLRE, a regulator of the G2/M phase of the cell cycle, in Alzheimer's disease. Cell. Mol. Biol. Lett. 16 (2011) 350-372.
  • 8. Koo, E.H. The beta-amyloid precursor protein (APP) and Alzheimer's disease: does the tail wag the dog? Traffic 3 (2002) 763-770.
  • 9. Wirths, O., Multhaup, G. and Bayer, T.A. A modified beta-amyloid hypothesis: intraneuronal accumulation of the beta-amyloid peptide—the first step of a fatal cascade. J. Neurochem. 91 (2004) 513-520.
  • 10. Howlett, D.R., Simmons, D.L., Dingwall, C. and Christie, G. In search of an enzyme: the beta-secretase of Alzheimer’s disease is an aspartic proteinase. Trends Neurosci. 23 (2000) 565-570.
  • 11. Yatin, S.M., Varadarajan, S., Link, C.D. and Butterfield, D.A. In vitro and in vivo oxidative stress associated with Alzheimer's amyloid beta-peptide (1-42). Neurobiol. Aging 20 (1999) 325-330.
  • 12. Butterfield, D.A. Amyloid beta-peptide (1-42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer's disease brain. Free Radic. Res. 36 (2002) 1307-1313.
  • 13. Gandy, S., Simon, A.J., Steele, J.W., Lublin, A.L., Lah, J.J., Walker, L.C., Levey, A.I., Krafft, G.A., Levy, E.F., Checler, F., Glabe, C., Bilker, W., Abel, T., Schmeidler, J. and Ehrlich, M.E. Days to criterion as an indicator of toxicity associated with human Alzheimer amyloid-beta oligomers. Ann. Neurol. 68 (2012) 220-230.
  • 14. Roher, A.E., Chaney, M.O., Kuo, Y.M., Webster, S.D., Stine, W.B., Haverkamp, L.J., Woods, A.S.C., Tuohy, J.M., Krafft, G.A., Bonnell, B.S. and Emmerling, M.R. Morphology and toxicity of Abeta-(1-42) dimer derived from neuritic and vascular amyloid deposits of Alzheimer’s disease. J. Biol. Chem. 271 (1996) 20631-20635.
  • 15. Kirkitadze, M.D. and Kowalska, A. Molecular mechanisms initiating amyloid beta-fibril formation in Alzheimer's disease. Acta Biochim. Pol. 52 (2005) 417-423.
  • 16. Sallowaya, S., Mintzerb, J., Weinerc, M.F. and Cummings, J.L. Diseasemodifying therapies in Alzheimer’s disease. Alzheimer’s Dement. 4 (2008) 65-79.
  • 17. Bathaie, S.Z. and Mousavi, S.Z. New applications and mechanisms of action of saffron and its important ingredients. Crit. Rev. Food. Sci. Nutr. 50 (2010) 761-786.
  • 18. Soeda, S., Ochiai T., Shimeno, H., Saito, H., Abe, K., Tanaka, H. and Shoyama, Y. Pharmacological activities of crocin in saffron. J. Nat. Med. 61 (2007) 102-111.
  • 19. Yin, Y.I., Bassit, B., Zhu, L., Yang, X., Wang, C. and Li Y.M. γ-secretase substrate concentration modulates the Aβ42/Aβ40 ratio: Implications for Alzheimer's disease. J. Biol. Chem. 282 (2007) 23639-23644.
  • 20. Bolhasani Sanjabi, A., Bathaie, S.Z., Moosavi-Movahedi, A.A. and Ghaffari, M. Separation and purification of some components of Iranian saffron. Asia J. Chem. 17 (2005) 725-729.
  • 21. Pandreou, M.A., Kanakis, C.D., Polissiou, M.G., Efthimiopoulos, S., Cordopatis, P., Margarity, M. and Lamari, F.N. Inhibitory activity on amyloid-beta aggregation and antioxidant properties of crocus sativus stigmas extract and its crocin constituents. J. Agric. Food Chem. 54 (2006) 8762-8768.
  • 22. Khurana, R., Coleman, C., Ionescu-Zanetti, C., Carter, S.A., Krishna, V., Grover, R.K., Roy, R. and Singh, S. Mechanism of thioflavin T binding to amyloid fibrils. J. Struct. Biol. 151 (2005) 229-238.
  • 23. Kirk, W.R., Kurian, E. and Prendergast, F.G. Characterization of the sources of protein-ligand affinity: 1-sulfonato-8-(1’)anilinonaphthalene binding to intestinal fatty acid binding protein. Biophys. J. 70 (1996) 69-83.
  • 24. Matulis, D., Baumann, C.G., Bloomfield, V.A. and Lovrien, R.E. 1-anilino8-naphthalene sulfonate as a protein conformational tightening agent. Biopolymers 49 (1999) 451-458.
  • 25. Matulis, D. and Lovrien, R. 1-Anilino-8-naphthalene sulfonate anion-protein binding depends primarily on ion pair formation. Biophys. J. 74 (1998) 422-429.
  • 26. Kelly, S.M., Jess, T.J. and Price, N.C. How to study proteins by circular dichroism. Biochim. Biophys. Acta 1751 (2005) 119-139.
  • 27. Sureshbabu, N., Kirubagaran, R. and Jayakumar, R. Surfactant-induced conformational transition of amyloid β-peptide. Eur. Biophys. J. 38 (2009) 355-367.
  • 28. Hasegawa, K., Ono, K., Yamada, M. and Naiki, H. Kinetic modeling and determination of reaction constants of Alzheimer's beta-amyloid fibril extension and dissociation using surface plasmon resonance. Biochemistry 41 (2002) 13489-13498.
  • 29. Naiki, H. and Gejyo, F. Kinetic analysis of amyloid fibril formation. Methods Enzymol. 309 (1999) 305-318.
  • 30. Sunde, M., Serpell, L.C., Bartlam, M., Fraser, P.E., Pepys, M.B. and Blake, C.C. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J. Mol. Biol. 273 (1997) 729-739.
  • 31. Wetzel, R. Ideas of order for amyloid fibril structure. Structure 10 (2002) 1031-1036.
  • 32. Dobson, C.M. Protein misfolding, evolution and disease. Trends Biochem. Sci. 24 (1999) 329-332.
  • 33. Dobson, C.M. The structural basis of protein folding and its links with human disease. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 356 (2001) 133-145.
  • 34. Younkin, S.G. Evidence that Aβ42 is the real culprit in Alzheimer’s disease. Ann. Neurol. 37 (1995) 287-288.
  • 35. Kayed, R., Head, E., Thompson, J.L., McIntire, T.M., Milton, S.C., Cotman, C.W. and Glabe, C.G. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300 (2003) 486-489.
  • 36. Ban, T., Hamada, D., Hasegawa, K., Naiki, H. and Goto, Y. Direct observation of amyloid fibril growth monitored by thioflavin T fluorescence. J. Biol. Chem. 278 (2003) 16462-16465.
  • 37. Bourhim, M., Kruzel, M., Srikrishnan, T. and Nicotera, T. Linear quantitation of Aβ aggregation using Thioflavin T: Reduction in fibril formation by colostrinin. J. Neurosci. Methods 160 (2007) 264-268.
  • 38. Nybo, M., Svehag, S.E. and Holm Nielsen, E. An ultrastructural study of amyloid intermediates in A beta1-42 fibrillogenesis. Scand. J. Immunol. 49 (1999) 219-223.
  • 39. Caesar, I., Jonson, M., Nilsson, K.P., Thor, S. and Hammarström, P. Curcumin promotes A-beta fibrillation and reduces neurotoxicity in transgenic drosophila. PLoS One 7 (2012) e31424.
  • 40. Kanski, J., Aksenova, M. and Butterfield, D.A. The hydrophobic environment of Met35 of Alzheimer's Abeta(1-42) is important for the neurotoxic and oxidative properties of the peptide. Neurotox. Res. 4 (2002) 219-223.
  • 41. Cardamone, M. and Puri, N.K. Spectrofluorimetric assessment of the surface hydrophobicity of proteins. Biochem. J. 282 (1993) 589-593.
  • 42. Schein, C.H. Solubility as a function of protein structure and solvent components. Nat. Biotech. 8 (1990) 308-317.
  • 43. Serpell, L.C. Alzheimer’s amyloid fibrils: structure and assembly. Biochim. Biophys. Acta 1502 (2000) 16-30.
  • 44. Crescenzi, O., Tomaselli, S., Guerrini, R., Salvadori, S., D’Ursi, A.M., Temussi, P.A. and Picone, D. Solution structure of the Alzheimer amyloid beta-peptide (1-42) in an apolar microenvironment. Similarity with a virus fusion domain. Eur. J. Biochem. 269 (2002) 5642-5648.
  • 45. López De La Paz, M., Goldie, K., Zurdo, J., Lacroix, E., Dobson, C.M., Hoenger, A. and Serrano, L. De novo designed peptide-based amyloid fibrils. Proc. Natl. Acad. Sci. USA 99 (2002) 16052-15057.
  • 46. Mishima, K., Tanaka, T., Pu, F., Egashira, N., Iwasaki, K., Hidaka, R., Matsunaga, K., Takata, J., Karube, Y. and Fujiwara, M. Vitamin E isoforms alpha-tocotrienol and gamma-tocopherol prevent cerebral infarction in mice. Neurosci. Lett. 337 (2003) 56-60.
Uwagi
Rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-d0096b9e-3617-4847-9737-33b56dd22852
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.