Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 33 | 3 |
Tytuł artykułu

Fluoranthene-induced production of ethylene and formation of lysigenous intercellular spaces in pea plants cultivated in vitro

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effect of increasing concentration of polycyclic aromatic hydrocarbon (PAH) fluoranthene (FLT; 0.1, 1 and 5 mg l⁻¹) on the growth, ethylene production and anatomy of stems of 21-day-old pea plants cultivated in vitro in MS medium, with or without FLT, enriched with 0.1 mg l⁻¹ indole-3-acetic acid (IAA) or with combination of 0.1 mg l⁻¹ IAA + 0.1 mg l⁻¹ N⁶-benzyladenine (BA) were investigated. The low concentration of 0.1 mg l⁻¹ FLT, in both IAA- and IAA + BA-treated plants, significantly stimulated the growth of pea callus, while higher concentrations 1 mg l⁻¹ and especially 5 mg l⁻¹ FLT significantly inhibited it. Pea shoots were significantly influenced only after application of 5 mg l⁻¹ FLT in IAA treatment. Significantly increased production of ethylene was found in IAA + BA treatments in all concentrations of FLT, whereas in IAA treatments in 1 and 5 mg l⁻¹ FLT. The lysigenous aerenchyma formation in the cortex of pea stems significantly increased in all FLT treatments and its highest proportion was found in plants exposed to 1 mg l⁻¹ FLT.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
33
Numer
3
Opis fizyczny
p.1037-1042,fig.,ref.
Twórcy
autor
  • Department of Plant Physiology and Anatomy, Institute of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
autor
  • Department of Plant Physiology and Anatomy, Institute of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
autor
  • Department of Plant Physiology, Faculty of Science, Charles University in Prague, Vinicna 5, 128 44 Prague, Czech Republic
Bibliografia
  • Aina R, Palin L, Citterio S (2006) Molecular evidence for benzo[a]pyrene and naphthalene genotoxicity in Trifolium repens L. Chemosphere 65:666–673
  • Buer CS, Sukumar P, Muday GK (2006) Ethylene modulates flavonoid accumulation and gravitropic responses in roots of Arabidopsis. Plant Physiol 140:1384–1396
  • Cabrera RM, Saltveit ME (2003) Survey of wound-induced ethylene production by excised root segments. Physiol Plantarum 119:203–210
  • Crawford RMM (1982) Physiological responses to flooding. In: Lange OL, Nonel PS, Osmond CB, Zieghler H (eds) Encyclopedia of plant physiology. Physiological plant ecology II. Springer, Berlin, pp 453–477
  • Fišerová H, Hradilík J, Procházka S, Klemš M, Ráčilová A (1996) Formation of ethylene, ethane and abscisic acid content in relation to dormancy of spring barley (Hordeum vulgare L.) kernels. Rostl výroba 42:245–248
  • Gladish DK, Niki T (2000) Factors inducing cavity formation in the vascular cylinders or pea roots (Pisum sativum L., cv. Alaska). Environ Exp Bot 43:1–9
  • He C-J, Morgan PW, Drew MC (1996) Transduction of an ethylene signal is required for cell death and lysis in the root cortex of maize during aerenchyma formation induced by hypoxia. Plant Physiol 112:463–472
  • Huang X-D, Zeiler LF, Dixon DG, Greenberg BM (1996) Photoinduced toxicity of PAHs to the foliar regions of Brassica napus (canola) and Cucumbis sativus (cucumber) in simulated solar radiation. Ecotoxicol Environ Saf 35:190–197
  • Kumar PP, Reid DM, Thorpe TA (1987) The role of ethylene and carbon dioxide in differentiation of shoot buds in excised cotyledons of Pinus radiata in vitro. Physiol Plantarum 69:244–252
  • Kummerová M, Krulová J, Zezulka Š, Tříska L (2006) Evaluation of fluoranthene phytotoxicity in pea plants by Hill reaction and chlorophyll fluorescence. Chemosphere 65:489–496
  • Kummerová M, Váňová L, Fišerová H, Klemš M, Zezulka Š, Krulová J (2010) Understanding the effect of organic pollutant fluoranthene on pea in vitro using cytokinins, ethylene, ethane and carbon dioxide as indicators. Plant Growth Regul 61:161–174
  • Lu P, Gladish DK, Rost TL (1991) Temperature-induced cavities and specialized parenchyma cells in the vascular cylinder of pea roots. Am J Bot 78:729–739
  • Matschke J, Macháčková I (2002) Changes in the content of indole-3-acetic acid and cytokinins in spruce, fir and oak trees after herbicide treatment. Biol Plantarum 45:375–382
  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plantarum 15:473–497
  • Niki T, Gladish DK, Lu P, Rost TL (1995) Cellular changes precede cavity formation in the vascular cylinder of pea roots (Pisum sativum L. cv. Alaska). Int J Plant Sci 156:290–302
  • Niki T, Rost TL, Gladish DK (1998) Regeneration of tissue following cavity formation in vascular cylinders of Pisum sativum (Fabaceae) primary roots. Am J Bot 85:17–24
  • Piccardo MT, Pala M, Bonaccurso B, Stella A, Redaelli A, Paola G, Valerio F (2005) Pinus nigra and Pinus pinaster needles as passive samplers of polycyclic aromatic hydrocarbons. Environ Pollut 133:293–301
  • Pierik R, Tholen D, Poorter H, Visser EJW, Voesenek LACJ (2006) The Janus face of ethylene: growth inhibition and stimulation. Trends Plant Sci 11:176–183
  • Rost TL, Jones TJ, Falk RH (1988) Distribution and relations of cell division and maturation events in Pisum sativum (Fabaceae) seedling roots. Am J Bot 75:1571–1583
  • Steffens B, Sauter M (2005) Epidermal cell death in rice is regulated by ethylene, gibberellin, and abscisic acid. Plant Physiol 139:713–721
  • Sverdrup LE, Krogh PH, Nielsen T, Kjær C, Stenersen J (2003) Toxicity of eight polycyclic aromatic compounds to red clover (Trifolium pratense), ryegrass (Lolium perenne), and mustard (Sinapsis alba). Chemosphere 53:993–1003
  • Swarup R, Perry P, Hagenbeek D, Van Der Straeten D, Beemster GTS, Sandberg G, Bhalerao R, Ljung K, Bennett MJ (2007) Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell 19:2186–2196
  • Trapp S (2000) Modelling uptake into roots and subsequent translocation of neutral and ionisable organic compounds. Pest Manag Sci 56:767–778
  • Váňová L, Kummerová M, Klemš M, Zezulka Š (2009) Fluoranthene influences endogenous abscisic acid level and primary photosynthetic processes in pea (Pisum sativum L.) plants in vitro. Plant Growth Regul 57:39–47
  • Wakabayashi K, Böger P (2004) Phytotoxic sites of action for molecular design of modern herbicides (Part 1): the photosynthetic electron transport system. Weed Biol Manag 4:8–18
Uwagi
rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-cfd069f5-6908-4ddc-843e-370f96f9e2eb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.