Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
In the head and neck of human mid-term foetuses, the interface between areas of endochondral ossification and adjacent membranous (intramembranous) ossification is extensive. Using 8 foetal heads at 15–16 weeks, we have demonstrated differences in the matrices and composite cells between these 2 ossification processes, especially in the occipital squama and pterygoid process. Aggrecan-positive cartilage was shown to be invaded by a primitive bony matrix that was negative for aggrecan. At the interface, the periosteum was continuous with the perichondrium without any clear demarcation, but tenascin-c expression was restricted to the periosteum. In contrast, the interface between the epiphysis and shaft of the femur showed no clear localisation of tenascin-c. Versican expression tended to be restricted to the perichondrium. In the pterygoid process, the density of CD34-positive vessels was much higher in endochondral than in membranous ossification. The membranous part of the occipital was considered most likely to contribute to growth of the skull to accommodate the increased volume of the brain, while the membranous part of the pterygoid process seemed to be suitable for extreme flattening under pressure from the pterygoid muscles. (Folia Morphol 2014; 73, 2: 199–205)
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.199-205,fig.,ref.
Twórcy
autor
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan
autor
- Department of Anatomy, Chonbuk National University Medical School, Jeonju, Korea
autor
- Department of Surgery, Daejeon Sun Hospital, Daejeon, Korea
autor
- Maxillofacial Anatomy, Department of Maxillofacial Biology, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
autor
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
autor
- Division of Internal Medicine, Iwamizawa Kojin-kai Hospital, Iwamizawa, Japan
autor
- Department of Surgery and Research Institute of Clinical Medicine, Chonbuk National University Hospital, Jeonju, Korea
Bibliografia
- 1. Abe S, Suzuki M, Cho KH, Murakami G, Cho BH, Ide Y (2011) CD34-positive developing vessels and other structures in human fetuses: an immunohistochemical study. Surg Radiol Anat, 33: 919–927.
- 2. Bandyopadhyay A, Kubilus JK, Crochiere ML, Linsenmayer TF, Tabin CJ (2008) Identification of unique molecular subdomains in the perichondrium and periosteum and their role in regulating gene expression in the underlying chondrocytes. Dev Biol, 321: 162–174.
- 3. Colnot C, Lu C, Hu D, Helms JA (2004) Distinguishing the contributions of the perichondrium, cartilage, and vascular endothelium to skeletal development. Dev Biol, 269: 55–69.
- 4. Conen KL, Nishimori S, Provot S, Kronenberg HM (2009) The transcriptional cofactopr Lbh regulates angiogenesis and endochondral bone formation during fetal bone development. Dev Biol, 333: 348–358.
- 5. Hall BK, Miyake T (1992) The membranous skeleton: the role of cell condensation in vertebrate skeletogenesis. Anat Embryol, 186: 107–124.
- 6. Hayashi T, Kumasaka T, Mitani K, Yao T, Suda K, Seyama K (2010) Loss of heterozygosity on tuberous sclerosis complex genes in multifocal micronodular pneumatocyte hyperplasia. Mod Pathol, 23: 1251–1260.
- 7. Jin ZW, Song KJ, Lee NH, Nakamura T, Fujimiya M, Murakami G, Cho BH (2011) Contribution of the anterior longitudinal ligament to ossification and growth of the vertebral body: an immunohistochemical study using the human fetal lumbar vertebrae. Surg Radiol Anat, 33: 11–18.
- 8. Katori Y, Kiyokawa H, Kawase T, Murakami G, Cho BH (2011) CD34-positive primitive vessels and fascial structures in the ear, nose and throat of human fetuses: an immunohistochemical study. Acta Otolaryngol, 131: 1086–1090.
- 9. Kinoshita H, Umezawa T, Omine Y, Kasahara M, Rodríguez-Vázquez JF, Murakami G, Abe S (2013) Distribution of elastic fibers in the head and neck: a histological study using late-stage human fetuses. Anat Cell Biol, 16: 39–48.
- 10. Komori T (2010) Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell Tissue Res, 339: 189–195.
- 11. Kronenberg HM (2003) Developmental regulation of the growth plate. Nature, 423: 332–336.
- 12. Lin CS, Xin ZC, Deng CH, Ning H, Lin G, Lue TF (2010) Defining adipose tissue-derived stem cells in tissue and in culture. Histol Histopathol, 25: 807–815.
- 13. Michikami I, Fukushi T, Tanaka M, Egusa H, Maeda Y, Ooshima T, Wakisaka S, Abe M (2012) Krűppel-like factor 4 regulates membranous and endochondral ossification. Exp Cell Res, 318: 311–325.
- 14. Motohashi O, Suzuki M, Shida N, Umezawa T, Ohtoh Y, Sakurai Y, Yoshimoto T (1995) Subarachnoid haemorrhage-induced proliferation of leptomeningeal cells and deposition of extracellular matrices in the arachnoid granulations and subarachnoid space. Acta Neurochir, 136: 88–91.
- 15. Nishimori S, Provot S, Kronenberg HM (2009) The transcriptional cofactor Lbh regulates angiogenesis and endochondral bone formation during fetal bone development. Dev Biol, 333: 348–358.
- 16. Okada R, Arima K, Kawai M (2002) Arterial changes in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) in relation to pathogenesis of diffuse myelin loss of cerebral white matter. Stroke, 33: 2565–2569.
- 17. Rodríguez-Vázquez JF, Mérida-Velasco JR, Mérida-Velasco JA, Sánchez-Montesinos I, Espín-Ferra J, Jiménez-Collado J (1997) Development of Meckel’s cartilage in the symphyseal region in man. Anat Rec, 249: 249–254.
- 18. Shibata S, Fukada K, Imai H, Abe T, Yamashita Y (2003) In situ hybridization and immunohistochemistry of versican, aggrecan, and link protein and histochemistry of hyaluronan in the developing mouse limb bud cartilage. J Anat, 203: 425–432.
- 19. Verdugo-Lopez S, Rodríguez-Vázquez, Garrido JM, Peinado-Real MA (2012) Torus mandibularis in the childhood and in the initial stages of adolescence. Craniofacial Bone Res, 1: 78–84.
- 20. Xu H, Edwards J, Banerji S, Prevo R, Jackson DG, Athanasou NA (2003) Distribution of lymphatic vessels in normal and arthritic human synovial tissues. Ann Rheum Dis, 62: 1227–1229.
- 21. Yokohama-Tamaki T, Maeda T, Tanaka TS, Shibata S (2011) Functional analysis of CTRP3/cartducin in Meckel’s cartilage and developing condylar cartilage in the fetal mouse mandible. J Anat, 218: 517–533.
- 22. Young HE, Steele TA, Bray RA, Hudson J, Floyd JA, Hawkins K, Thomas K, Austin T, Edwards C, Cuzzourt J, Duenzi M, Lucas PA, Black AC Jr (2001) Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. Anat Rec, 264: 51–62.
- 23. Williams PL (1995) Gray’s anatomy. 38th Ed. Churchill Livingstone, Edinburgh, pp. 471–480.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-cfca72ea-8177-45c4-a7c4-6d8406418248