Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 63 | 3 |
Tytuł artykułu

Effect of soil moisture on morpho-anatomical leaf traits of Ranunculus acris (Ranunculaceae)

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Leaf morphological and anatomical differences between two collection sites in central Poland were examined in tall buttercup Ranunculus acris. We hypothesized that the availability of soil moisture would affect leaf morphological and anatomical traits. The objective of this study was to examine the effect of soil moisture content on: leaf size, epidermal features and on a number of stomatal characteristics in populations of R. acris species. The plants were investigated at sites differing in soil moisture conditions (a dryer upper site and a wetter lower site). Relatively semi-dry and wet sites were identified by plant communities and soil moisture content. We found out that morphological and anatomical leaf traits of R. acris were significantly related to soil moisture content. Leaves from plants growing in the wet site were 26% smaller in size than those from the semi-dry site. The population with smaller leaf area had larger leaf perimeter and higher dissection index. The stomatal index of the leaves sampled in the semi-dry site was higher than that of the leaves sampled in the wet site. Greater leaf thickness in the semi-dry site was primarily the result of increased spongy parenchyma thickness. On the abaxial leaf surface epidermal cell density was significantly higher at the wet site implying more epidermal cells. On the adaxial leaf surface, however, epidermal cell density decreased when plants were exposed to the elevated soil moisture. The results may indicate that soil moisture content influences leaf anatomy and morphology of R. acris. Thus, all these leaf morphoanatomical traits provide a basis for R. acris to reduce water loss from leaves and to balance water use efficiency under reduced precipitation. The present study demonstrates that R. acris can maximize growth in habitats with a wide range of soil moisture availability and such information can be crucial for developing management strategies and predictive models of its spread.
Wydawca
-
Rocznik
Tom
63
Numer
3
Opis fizyczny
p.400-413,fig.,ref.
Twórcy
  • Department of Geobotany and Plant Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
  • Laboratory of Electron Microscopy, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
Bibliografia
  • K. Aasamaa, A. Sõber 2011 — Stomatal sensitivities to changes in leaf water potential, air humidity, CO₂ concentration and light intensity, and the effect of abscisic acid on the sensitivities in six temperate deciduous tree species — Environ. Exper. Bot. 71: 72–78.
  • M.D. Abrams 1990 — Adaptations and responses to drought in Quercus species of North America — Tree Physiol. 7: 227–238.
  • C.A. Black 1965 — Methods of soil analysis: Part I Physical and mineralogical properties — American Society of Agronomy Madison, Wisconsin, USA.
  • E. Baldini, O. Facini, F. Nerozzi, F. Rossi, A. Rotondi 1997 — Leaf characteristics and optical properties of different woody species — Trees, 12: 73–81.
  • S. Bañon, J.A. Fernandez J.A. Franco, A. Torrecillas, M.J. Sánchez-Blanco 2004 — Effects of water stress and night temperature preconditioning on water relations and morphological and anatomical changes of Lotus creticus plants — Sci. Hort. 101: 333– 342.
  • R. Ceulemans, L. Van Praet, X.N. Jiang 1995 — Effects of CO₂ enrichment, leaf position and clone on stomatal index and epidermal cell density in poplar (Populus) — New Phytol. 131: 99–107.
  • S.M. Coles 1971 — The Ranunculus acris L. complex in Europe — Watsonia, 8: 237–261.
  • N.M. Cowart, J.H. Graham 1999 — Within-and among-individual variation in fluctuating asymmetry of leaves in the fig (Ficus carica L.) — Int. J. Plant Sci. 160: 116–121.
  • S.A. Cunningham, B. Summerhayes, M. Westoby 1999 — Evolutionary divergences in leaf structure and chemistry comparing rainfall and soil nutrient gradients — Ecol. Monogr. 69: 569–588.
  • T.A. Dickinson, W.H. Parker, R.E. Strauss 1987 — Another approach to leaf shape comparisons — Taxon, 36: 1–20.
  • J.M. Dunlap, R.F. Stettler 2001 — Variation in leaf epidermal and stomatal traits of Populus trichocarpa from two transects across the Washington Cascades — Can. J. Bot. 79: 528–536.
  • J. Ehleringer, O. Björkman 1978 — Pubescence and leaf spectral characteristics in a desert shrub, Encolia farinose — Oecologia, 36: 151–162.
  • J. Ehleringer, H.A. Mooney, 1978 — Leaf hairs: effects on physiological activity and adaptive value to a desert shrub — Oecologia, 37: 183–200.
  • J. Ehleringer, H.A. Mooney, S.L. Gulmon, P.W. Rundel 1981 — Parallel evolution of leaf pubescence in Encelia in coastal deserts of North and South America — Oecologia, 49: 38–41.
  • M. Ennajeh, A.M. Vadel, H. Cochard, H. Khemira 2010 — Comparative impacts of water stress on the leaf anatomy of a drought-resistant and a drought-sensitive olive cultivar — J. Hortic. Sci. Biot. 85: 289–294.
  • A. Fahn 1986 — Structural and functional properties of trichomes of xeromorphic leaves — Ann Bot. (Lond) 57: 631–637.
  • R.A. Farley, T. Mcneilly 2000 — Diversity and divergence in Cistus salvifolius (L.) populations from contrasting habitats — Hereditas, 132: 183–192.
  • C.R. Fonseca, J.M. Overton, B. Collins, M. Westoby 2000 — Shifts in trait- combinations along rainfall and phosphorus gradients — J. Ecol. 88: 964–977.
  • J. Forysiak, D. Michalska-Hejduk 2004 — Changes of the Wilczków peat-bog under long- term anthropopressure (In: The Future of Polish Mires, Eds: L. Wołejko, L. Jasnowska) — Soc. Scient. Stetinensis, Agricult. Univ. Szczecin, pp. 213–218.
  • E. Garnier, B. Shipley, C. Roumet, G. Laurent 2001 — A standardized protocol for the determination of specific leaf area and leaf dry matter content — Funct. Ecol. 15: 688– 695.
  • I. Gindel 1969 — Stomata constellation in the leaves of cotton, maize and wheat plants as a function of soil moisture and environment — Physiol. Plant. 22: 1143–1151.
  • A. Gonzáles-Rodriguez, K. Oyama 2005 — Leaf morphometric variation in Quercus affinis and Q. laurina (Fagaceae), two hybridizing Mexican red oaks — Bot. J. Linn. Soc. 147: 427–435.
  • J. Gurevitch, P.H. Schuepp 1990 — Boundary layer properties of highly dissected leaves: an investigation using an electrochemical fluid tunne — Plant, Cell Environ. 13: 783–792.
  • J.L. Harper 1957 — Biological flora of the British Isles — Ranunculus acris L. (R. acer auct. plur) — J. Ecol. 45: 289–342.
  • A.M. Hetherington, I. Woodward 2003 — The role of stomata in sensing and driving environmental change — Nature, 424: 901–908.
  • S.B. Jack, J.N. Long 1991 — Response of leaf area index to density for two contrasting tree species — Can. J. For. Res. 21: 1760–1764.
  • D.T. Kincaid, R.B. Schneider 1983 — Quantification of leaf shape with a microcomputer and Fourier transform — Can. J. Bot. 61: 2333–2342.
  • M.G. Klich 2000 — Leaf variations in Elaeagnus angustifolia related to environmental heterogeneity — Environ. Exper. Bot. 44: 171–183.
  • T.T. Kozlowski 1976 — Water relations and tree improvement (In: Tree physiology and yield improvement, Eds: M.G.R Cannell, F.T. Last) — Academic Press, London, pp. 307–327.
  • S.K. Kundu, P.M.A. Tigerstedt 1997 — Geographical variation in seed and seedling traits of Neem (Azadirachta indica A. JUSS.) among ten populations studied in growth chamber — Silvae Genet. 46: 2–3.
  • M.C. Lewis 1972 — The physiological significance of variation in leaf structure — Sci. Prog. 60: 25–51.
  • Z. Li, D. Yu 2009 — Factors effecting leaf morphology a case study of Ranunculus natans C & Mey. (Ranunculaceae) in the arid zone of northwest China — Ecol Res. 24: 1323–1333.
  • D.E. Lynn, S. Waldren 2001 — Morphological variation in populations of Ranunculus repens from the temporary limestone lakes (turloughs) in the west of Ireland — Ann. Bot. 87: 9–17.
  • H. Maherali, C.D. Reid, H.W. Policy, H.B. Johnson, R.B. Jachson 2002 — Stomatal acclimation over a sub ambient to elevated CO₂ gradient in a C3/C4 grassland — Plant Cell Environ. 25: 557–566.
  • S.R. Malone, H.S. Mayeux, H.B. Johnson, H.W. Policy 1993 — Stomatal density and aperture length in four plant species grown across a sub ambient CO₂ gradient — Am. J. Bot. 80: 1413–1418.
  • T. Mclellan 1993 — The roles of heterochrony and heteroblasty in the diversification of leaf shapes in Begonia dregei (Begoniaceae) — Am. J. Bot. 80: 796–804.
  • T. Mclellan 2000 — Geographic variationand plasticity of leaf shape and size in Begonia dregei and B. homonyma (Begoniaceae) — Bot. J. Linn. Soc. 132: 79–95.
  • H. Meidner, T.A. Mamsfield 1968 — Physiology of stomata. McGraw-Hill, UK. 179 pp.
  • J.B. Mitton, M.C. Grant, A.M. Yoshino 1998 — Variation in allozymes and stomatal size in pinyon (Pinus edulis, Pinaceae), associated with soil moisture — Am. J. Bot. 85: 1262–1265.
  • K.A. Mott, O. Michaelson 1991 — Amphistomy as an adaptation to high light intensity in Ambrosia cordifolia (Compositae) — Am. J. Bot. 78: 76–79.
  • J.J. Picotte, D.M. Rosenthal, J.M. Rhode, M.B. Cruzan 2007 — Plastic responses to temporal variation in moisture availability: Consequences for water use efficiency and plant performance — Oecologia, 153: 821–832.
  • A. Pyakurel, J.R. Wang 2014 — Leaf Morphological and stomatal variations in paper birch populations along environmental gradients in Canada — Am. J. Plant Sci. 5: 1508–1520.
  • S.A. Quarrie, H. Jones 1977 — Effects of abscistic acid and water stress on development and morphology of wheat — J. Exp. Bot. 28: 192–203.
  • K.M. Radoglou, P.G. Jarvis 1990 — Effects of CO₂ enrichment on four poplar clones. II. Leaf surface properties — Ann. Bot. 65: 627–632.
  • K. Raschke 1960 — Heat transfer between the plant and the environment — Annu. Rev. Plant Physiol. 11: 11–126.
  • D.R. Rossatto, R.M. Kolb 2010 — Gochnatia polymorpha (Less.) Cabrera (Asteraceae) changes in leaf structure due to differences in light and edaphic conditions. Acta Bot. Bras. 24: 605–612.
  • A. Rotondi, F. Rossi, C. Asunis, C. Cesaraccio 2003 — Leaf xeromorphic adaptations of some plants of a coastal Mediterranean macchia ecosystem — J. Mediterr. Ecol. 4: 25–35.
  • B.A. Roy, M.L. Stanton, S.M. Eppley 1999 — Effects of environmental stress on leaf hair density and consequences for selection — J. Evol. Biol. 12: 1089–1103.
  • F. Royer, R. Dickinson 1999 — Weeds of the Northern U.S. and Canada — The University of Alberta press. 434 pp.
  • T. Sachs, N. Novopiansky, M.L. Kagan 1993 — Variable development and cellular patterning in the epidermis of Ruscus bypogiossum — Ann. Bot. 71: 237–243.
  • E.J. Salisbury 1927 — On the causes and ecological significance of stomatal frequency, with special reference to woodland flora — Phil. Trans. R. Soc. B 431: 1–65.
  • P.J.H. Sharpe 1973 — Adaxial and ab axial stomatal resistance of cotton in the field — Agron. J. 65: 570–574.
  • L.M. Shields 1950 — Leaf xeromorphy as related to physiological and structural influences — Bot. Rev. 16: 399–447.
  • Stat-Soft Inc. 2011 — Statistica for Windows — Tulsa: Stat-soft, Inc.
  • O. Stocker 1960 — Physiological and morphological changes in plants due to water deficiency. Plant water relationships in arid and semiarid conditions — Rev. Res. UNESCO (Paris) 15: 63–104.
  • H. Tsukaya 2005 — Leaf shape: genetic controls and environmental factors — Int. J. Dev. Biol. 49: 547–555.
  • Y.P. Zhang, Z.M. Wang, Y.C. Wu, X. Zhang 2006 — Stomatal characteristics of different green organs in wheat under different irrigation regimes — Acta Agron. Sin. 32: 70–75.
  • Z. Xu, G. Zhou 2008 — Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass — J. Exp. Bot. 59: 3317–3325.
  • H.M. Yang, G.X. Wang 2001 — Leaf stomatal densities and distribution in Triticum aestivum under drought and CO₂ enrichment — Acta Phyt. Sinica, 25: 312–316.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.agro-ccff4436-84be-4e08-bbaa-4fe5d6fcb4bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.