Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 24 | 1 |
Tytuł artykułu

The influence of gear micropump body asymmetry on stress distribution

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of numerical calculations of stress distributions in the gear micropump body for applications in hydraulic systems, especially in the marine sector. The scope of the study was to determine the most favorable position of bushings and pumping unit in the gear pump body in terms of stress and displacement distribution in the pump housing. Fourteen cases of gear pump bushings and pumping unit locations were analyzed: starting from the symmetrical position relative to the central axis of the pump, up to a position shifted by 2.6 mm towards the suction channel of the pump. The analysis of the obtained calculation results has shown that the most favorable conditions for pump operation are met when the bushings are shifted by 2.2 mm towards the suction channel. In this case the maximal stress was equal to 109 MPa, while the highest displacement was about 15µm. Strength and stiffness criteria in the modernized pump body were satisfied
Słowa kluczowe
Wydawca
-
Rocznik
Tom
24
Numer
1
Opis fizyczny
p.60-65,fig.,ref.
Twórcy
autor
  • Wroclaw University of Science and Technology, Lukasiewicza 7/9, 50-371 Wroclaw, Poland
autor
  • Wroclaw University of Science and Technology, Lukasiewicza 7/9, 50-371 Wroclaw, Poland
autor
  • Wroclaw University of Science and Technology, Lukasiewicza 7/9, 50-371 Wroclaw, Poland
Bibliografia
  • 1. Biernacki K., Stryczek S., PL Patent Application No. 123143, 06.06.2014
  • 2. Casoli P., Vacca A., Berta G.L., Optimization of relevant design parameters of external gear pumps, 7th International Symposium on Fluid Power, Toyama 2008.
  • 3. Casoli P., Vacca A., Franzoni G., A numerical model for the simulation of external gear pumps, 6th JFPS International Symposium on Fluid Power, Tsukuba, 2005.
  • 4. Dhar S., Vacca A., A novel CFD - Axial motion coupled model for the axial balance of lateral bushings in external gear machines, Simulation Modelling Practice and Theory, 2012, 67, pp 60-76.
  • 5. Ghionea I., Ghionea A., Constantin G., CAD - CAE methodology applied to analysis of a gear pump, Proceedings in Manufacturing Systems, 2013, vol.8, issue 1.
  • 6. Kollek W., Pompy zębate – Konstrukcja i eksploatacja, Ossolineum, Wrocław 1996.
  • 7. Kollek W., Osiński P., Modelling and design of gear pumps, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2009.
  • 8. Kollek W., Radziwanowska U., Energetic efficiency of gear micropumps, Archives of Civil and Mechanical Engineering, 2015, Vol. 15, Issue 1, pp 109–115.
  • 9. Li H., Yang Ch., Zhou P., The finite element analysis and optimizations of shells of internal gear pumps based on Ansys, Fluid Power and Mechatronics ,2011, pp 185-190
  • 10. Lipski J., Napęd i Sterowanie Hydrauliczne, Wydawnictwa Komunikacji i Łączności 1981.
  • 11. Łączkowski R., Wibroakustyka Maszyn i Urządzeń, Wydawnictwo Naukowo-Techniczne, 1983.
  • 12. Mucchi E., Dalpiaz G., Experimental Validation of a Model for the Dynamic Analysis of Gear Pumps, ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 5: 25th International Conference on Design Theory and Methodology; ASME 2013 Power Transmission and Gearing Conference, Portland, Oregon, USA, August 4–7, 2013.
  • 13. Mucchi E., Dalpiaz G., Fernandez del Rincon A., Elastodynamic analysis of a gear pump. Part I: Pressure distribution and gear eccentricity, Mechanical Systems and Signal Processing, 2010, 24, p. 2160-2179.
  • 14. Mucchi E., Rivola A., Dalpiaz G., Modelling dynamic behaviour and noise generation in gear pumps: Procedure and validation, Applied Acoustics, 2014, 77, pp 99-111.
  • 15. Osiński P., Deptuła A., Partyka M. A., Discrete optimization of a gear pump after tooth root undercutting by means of multi-valued logic trees, Archives of Civil and Mechanical Engineering, 2013, vol. 13, No. 4, pp 422-431, http://dx.doi.org/10.1016/j.acme.2013.05.001
  • 16. Osiński P., Kollek W., Assessment of energetistic measuring techniques and their application to diagnosis of acoustic condition of hydraulic machinery and equipment, Archives of Civil and Mechanical Engineering, 2013, vol. 13, nr 3, pp 313-321, http://dx.doi.org/10.1016/j. acme.2013.03.001
  • 17. Osiński P., Modelling and design of gear pumps with modified tooth profile, LAP Lambert Academic Publishing. Saarbrucken 2014.
  • 18. Osiński P., Wysokociśnieniowe i niskopulsacyjne pompy zębate o zazębieniu zewnętrznym, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2013.
  • 19. Ragunathan C., Manoharan C., Dynamic analysis of hydrodynamic gear pump performance using design of experiment stand operational parameters, IOSR Journal of Mechanical and Civil Engineering, 2012, vol. 1, issue 6, pp 17-23.
  • 20. Singal R.K., Singal M., Singal R., Hydraulic Machines. Fluid Machinery, I.K. International Publishing House, New Delhi, 2009.
  • 21. Śliwiński P., Flow of liquid in flat gaps of the satellite motor working mechanism, Polish Maritime Research 2(82) 2014 Vol 21, pp 50-57.
  • 22. Śliwiński P., The basics of design and experimental tests of the commutation unit of a hydraulic satellite motor, Archives of Civil and Mechanical Engineering, 2016, vol. 16, issue 4, pp 634–644, doi:10.1016/j.acme.2016.04.003.
  • 23. Stryczek S., Napęd Hydrostatyczny, Wydawnictwo Naukowo-Techniczne, Warszawa 2005.
  • 24. Vacca A., Guidetti M., Modelling and experimental validation of external spur gear machines for fluid power applications, Simulation Modelling Practice and Theory, 2011, 19, pp 2007-2031.
  • 25. Wang S., Sakurai H., Kasarekar A., The optimal design in external gear pumps and motors, ASME Transactions on Mechatronics, 2011, vol. 16, no. 5.
  • 26. http://www.kxcad.net/ansys/ANSYS/ansyshelp/Hlp_E_ SOLID187.html
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-cbceba47-e59c-4934-85be-3821ad4ca6c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.