Warianty tytułu
Języki publikacji
Abstrakty
The response of a red blood cell (RBC) to deformation depends on its membrane, a composite of a lipid bilayer and a skeleton, which is a closed, twodimensional network of spectrin tetramers as its bonds. The deformation of the skeleton and its lateral redistribution are studied in terms of the RBC resting state for a fixed geometry of the RBC, partially aspirated into a micropipette. The geometry of the RBC skeleton in its initial state is taken to be either two concentric circles, a references biconcave shape or a sphere. It is assumed that in its initial state the skeleton is distributed laterally in a homogeneous manner with its bonds either unstressed, presenting its stress-free state, or prestressed. The lateral distribution was calculated using a variational calculation. It was assumed that the spectrin tetramer bonds exhibit a linear elasticity. The results showed a significant effect of the initial skeleton geometry on its lateral distribution in the deformed state. The proposed model is used to analyze the measurements of skeleton extension ratios by the method of applying two modes of RBC micropipette aspiration.
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.217-227,fig.,ref.
Twórcy
autor
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
autor
Bibliografia
- 1.Waugh, R.E. and Hochmuth, R.M. Mechanics and deformability of hematocytes. in: The Biomedical Engineering Handbook (Bronzino, J.D. Ed.), 2nd edition, CRC, Boca Raton, 1995, 474-486.
- 2. Discher, D.E. and Mohandas, N. Kinematics of red cell aspiration by fluorescence-imaged microdeformation. Biophys. J. 71 (1996) 1680-1694.
- 3. Discher, D.E., Boal, D.H. and Boey, S.K. Simulations of the erythrocyte cytoskeleton at large deformation. II. micropipette aspiration, Biophys. J. 75 (1998) 1584-1597.
- 4. Skalak, R., Tozeren, A., Zarda, R.P. and Chien, S. Strain energy function of red blood-cell membranes. Biophys. J. 13 (1973) 245-264.
- 5. Evans, E.A. New material concept for red-cell membrane. Biophys. J. 13 (1973a) 926-940.
- 6. Evans, E.A. New membrane concept applied to analysis of fluid sheardeformed and micropipet-deformed red blood-cells. Biophys. J. 13 (1973b) 941-954.
- 7. Brailsford, J.D., Korpman, R.A. and Bull, B.S. Red-cell shape from discocyte to hypotonic spherocyte - mathematical delineation based on a uniform shell hypothesis. J. Theor. Biol. 60 (1976) 131-145.
- 8. Fischer, T.M., Haest, C.W.M., Stohrliesen, M., Schmidschonbein, H. and Skalak, R. The stress-free shape of the red-blood-cell membrane. Biophys. J. 34 (1981) 409-422.
- 9. Peng, Z., Asaro, R.J. and Zhu, Q. Multiscale simulation of erythrocyte membrane. Phys. Rev. E. 81 (2010) 031904.
- 10. Lee, J.C., Wong, D.T. and Discher, D.E. Direct measures of large, anisotropic strains in deformation of the erythrocyte cytoskeleton. Biophys. J. 77 (1999) 853-864.
- 11. Evans, E.A. and Fung, Y.C. Improved measurements of the erythrocyte geometry. Microvasc. Res. 4 (1972) 335-347.
- 12. Byers, T.J. and Branton, D. Visualization of the protein associations in the erythrocyte-membrane skeleton. Proc. Natl. Acad. Sci. USA 82 (1985) 6153-6157.
- 13. Mukhopadhyay, R., Lim, G. and Wortis, M. Echinocyte shapes: bending, stretching, and shear determine bump shape and spacing. Biophys. J. 82 (2002) 1756-1772.
- 14. Kuzman, D., Svetina, S., Waugh, R.E. and Žekš, B. Elastic properties of the red blood cell membrane that determine echinocyte deformability. Eur. Biophys J. 33 (2004) 1-15.
- 15. Fischer, T.M. Shape memory of human red blood cells. Biophys. J. 86 (2004) 3304-3313.
- 16. Henon, S., Guillaume, L., Richert, A. and Gallet, F. A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. Biophys. J. 86 (1999) 1145-1154.
- 17. Li, J., Dao, M., Lim, C.T. and Suresh, S. Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte. Biophys. J. 88 (2005) 3707-3719.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-c92dae9d-ee90-4566-a979-143c01484b65