Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 72 | 07 |
Tytuł artykułu

Metaloproteazy ssaków i owadów

Warianty tytułu
EN
Mammalian and insect metalloproteases
Języki publikacji
PL
Abstrakty
EN
Metalloproteases (metalloproteinases, MMP) digest extracellular matrix proteins. They have zinc ions (Zn²⁺) in their active site. They are synthesized within cells as proenzymes, to be subsequently activated in the extracellular environment. MMP are active in a neutral or slightly alkaline pH in the presence of Ca²⁺ ions. Cells that synthesize metalloproteases also produce metalloprotease inhibitors. Until now, 4 of MMP inhibitors as well as 28 endometalloproteases have been discovered, out of which 22 occur in humans. On the other hand, these enzymes have not been well explored in insects, in which only 2 metalloproteases were identified (Ance and ECE). Their optimal activity ranges between pH 7.0 and 9.4. MMP inhibitors control the concentration of metalloproteases in physiological conditions. They fall within two types: specific tissue MMP inhibitors and non-specific plasma MMP inhibitors. Metalloproteases and their inhibitors play an important role in both physiological and pathological processes in the organism. Metalloproteases are cell growth promotors. They inhibit/induce apoptosis, stimulate the development of healthy cells and control the activity of neoplastic cells both in people and in insects. Their activity is increased in skin and periodontal diseases, in arthritis, arteriosclerosis or in the period following myocardial infarction. In insects the activity of MMPs is also increased by environmental pollution, by the use of antibiotics and varroacides. The insect MMPs participate in digestion, biosynthesis of peptide hormones and neurotransmitters, and melanisation. They also affect the development of the reproductive system and the development of larvae and pupae, as well as prevent pathogen invasions. Worthy of special attention is the insect cuticle defensive barrier associated with MMP. Activation of metalloproteases is dependent on the physiological state of the organism, as well as on environmental pressure. Analyzing activities of metalloproteases and their inhibitors enables better monitoring of the pathological conditions in both insects and mammals.
Wydawca
-
Rocznik
Tom
72
Numer
07
Opis fizyczny
s.408-412,tab.,bibliogr.
Twórcy
autor
  • Zakład Biologii Eksperymentalnej i Środowiskowej, Katedra Biologicznych Podstaw Produkcji Zwierzęcej, Wydział Biologii i Hodowli Zwierząt, Uniwersytet Przyrodniczy w Lublinie, ul. Akademicka 13, 20-950 Lublin
autor
  • Zakład Biologii Eksperymentalnej i Środowiskowej, Katedra Biologicznych Podstaw Produkcji Zwierzęcej, Wydział Biologii i Hodowli Zwierząt, Uniwersytet Przyrodniczy w Lublinie, ul. Akademicka 13, 20-950 Lublin
autor
  • Zakład Biologii Eksperymentalnej i Środowiskowej, Katedra Biologicznych Podstaw Produkcji Zwierzęcej, Wydział Biologii i Hodowli Zwierząt, Uniwersytet Przyrodniczy w Lublinie, ul. Akademicka 13, 20-950 Lublin
autor
  • Zakład Biologii Eksperymentalnej i Środowiskowej, Katedra Biologicznych Podstaw Produkcji Zwierzęcej, Wydział Biologii i Hodowli Zwierząt, Uniwersytet Przyrodniczy w Lublinie, ul. Akademicka 13, 20-950 Lublin
Bibliografia
  • Airola K., Ahonen M., Johansson N.: Human timp-3 is expressed during fatal development, hair growth cycle and cancer progression. J. Histochem. Cytochem. 1998, 46, 437-447.
  • Birkedal H. H.: Role of matrix metalloproteinases in human periodontal diseases. J. Periodontol. 1993, 64, 474-484.
  • Bode W., Fernandez-Catalan C., Nagase H., Maskos K.: Endoproteinase – protein inhibitor interaction. Acta Pathol. Microbiol. Immunol. Scand. 1999, 107, 3-10.
  • Borsuk G., Olszewski K., Strachecka A., Paleolog J., Gagoś M.: The interaction of worker bees which have increased genotype variance. II. Cage tests of sugar syrup collecting and mortality. J. Api. Sci. 2011, 55, 59-65.
  • Cawston T. E., Mercer E.: Preferential binding of collagenase to alpha 2-macroglobulin in the presence of the tissue inhibitor of metalloproteinases. FEBS Lett. 1986, 209, 9-12.
  • Cornell M. J., Williams T. A., Lamango N. S., Coates D., Corvol P., Soubrier F., Hoheisel J., Lehrach H., Isaac R. E.: Cloning and expression of an evolutionary conserved single domain angiotensin converting enzyme from Drosophila melanogaster. J. Biol. Chem. 1995, 270, 13613-13619.
  • Cornette R., Farine J., Quennedey B., Riviere S., Brossut R.: Molecular characterization of Lma-p45, a new epiculticular surface protein in the cockroach Leucophaea maderae (Dictyoptera, oxyhaloine). Insect Biochem. Mol. Biol. 2002, 32, 1635-1642.
  • Currie C. R.: A community of ants, fungi and bacteria: a multilateral approach to studying symbiosis. Annu. Rev. Microbiol. 2001, 55, 357-380.
  • Currie C. R., Scott J. A., Summerbell R. C., Malloch D.: Fungus – growing ants use antibiotis-producing bacteria to control garden parasites. Nature 1999, 398, 701-704.
  • Dziankowska-Bartkowiak B., Waszczykowska E., Żebrowska A.: Udział metaloprotein i ich inhibitorów w patomechanizmie wybranych chorób skóry. Immun.Klin. 2004, 9, 71-79.
  • Ekbote U., Coastes D., Isaac R. E.: A mosquito (Anopheles stephensi) angiotensin I-converting enzyme (ACE) is induced by a blood meal and accumulates in the developing ovary. FEBS Lett. 1999, 455, 219-222.
  • Ekbote U., Looker M., Isaac R. E.: ACE inhibitors reduce fecundity in the mosquito, Anopheles stephensi. Comp. Biochem. Physiol. 2003, B134, 593-598.
  • Ekbote U., Weaver R. J., Isaac R. E.: Angiotensin I-converting enzyme (ACE) activity of the tomato moth, Lacanobia oleracea: changes in levels of activity during developmental and after copulation suggest roles during metamorphosis and reproduction. Insect Biochem. Mol. Biol. 2003, 33, 989-998.
  • Frączek R., Żółtowska K., Lipiński Z., Dmitryjuk M.: The mutual influence of proteins from Varroa destructor extracts and from honeybee haemolymph on their proteolytic activity – in vivo study. Acta Parasitol. 2013, 58, 17-23.
  • Grzywnowicz K., Ciołek A., Tabor A., Jaszek M.: Profiles of the body-surface proteolytic system of honey bee queens, workers and drones: Ontogenetic and seasonal changes in proteases and their natural inhibitors. Apidolgie 2009, 40, 4-19.
  • Hayakawa T., Yamashita K., Ohuchi E., Shinagawa A.: Cell growth-promoting activity of tissue inhibitor of metalloproteinases-2 (TIMP-2). J. Cell. Sci. 1994, 107, 2373-2379.
  • Held K. G., LaRock C. N., D’Argenio D. A., Berg C. A., Collins C. M.: A metalloprotease secreted by the insect pathogen Photorhabdus luminescens induces melanization. Appl. Environ. Microbiol. 2007, 73, 7622-7628.
  • Hens K., Vandingenen A., Macours N., Baggerman G., Karaoglanovic A. C., Schoofs L., De Loof A., Huybrechts R.: Characterization of four substrates emphasizes kinetic similarity between insect and human C-domain angiotensin-converting enzyme. Europ. J. Biochem. 2002, 269, 3522-3530.
  • Hurst D., Rylett C. M., Isaac R. E., Shirras A. D.: The Drosophila angiotensin-converting enzyme homologue Ance is required for spermiogenesis. Develop. Biol. 2003, 254, 238-247.
  • Isaac R. E., Coates D., Williams T. A., Schoofs L.: Insect angiotensin-converting enzyme: comparative biochemistry and evolution. Sci. Exp. Biol. 1998, 65, 357-378.
  • Kołomecki K.: Hamowanie funkcji metaloproteinaz – możliwości zastosowania klinicznego. Onkol. Pol. 2000, 3, 163-167.
  • Leco K., Khokha R., Pavloff N.: Tissue inhibitor of matrix metalloproteinases-3 (TIMP-3) is an extracellular matrix-associated protein with a distinctive pattern of expression in mouse cell and tissues. J. Biol. Chem. 1994, 269, 9352-9360.
  • Leco K. J., Apte S. S., Taniguchi G. T., Hawkes S. P., Khokha R., Schultz G. A., Edwards D. R.: Murine tissue inhibitor of metalloproteinases-4 (Timp-4): cDNA isolation and expression in adult mouse tissues. FEBS Lett. 1997, 401, 213-217.
  • Lipka D., Boratyński J.: Metaloproteinazy MMP. Struktura i funkcja. Postępy Hig. Med. Dośw. 2008, 62, 328-336.
  • Lohmander L. S.: Metalloproteinases, tissue inhibitor and proteoglycan fragments in knee synovial fluid in human osteoarthritis. Arthritis Rheum. 1993, 36, 181-189.
  • Macours N., Hens K.: Zinc-metalloproteases in insects: ACE and ECE. Insect Bioch. Mol. Biol. 2004, 34, 501-510.
  • Murphy G., Houbrechts A., Cockett M. I., Wiliamson R. A., O’Shea M., Docherty A. J.: The treminal domain of tissue inhibitor of metalloproteinases retains metalloproteinase inhibitory activity. Biochem. 1991, 30, 8097-8102.
  • Nagase H.: Activation mechanisms of matrix metalloproteinases. Biol. Chem. 1997, 378, 151-160.
  • Overton L. K., Patel I., Becherer J. D., Chandra G., Kost T. A.: Expression of tissue inhibitor of metalloproteinases by recombinant baculovirus-infected insect cells cultured in an airlift fermentor. Meth. Mol. Biol. 1995, 39, 225-242.
  • Paleolog J., Strachecka A., Burzyński S. R., Olszewski K., Borsuk G.: The larval diet supplemented with sodium phenylacetylglutaminate influences the worker cuticle proteolytic system in honeybees (Apis mellifera). J. Api. Sci. 2011, 55, 67-77.
  • Reynolds J. J.: Connective tissue degradation in health and periodontal diease and the roles of metalloproteinases and their natural inhibitors. Adv. Dent. Res. 1994, 8, 312-319.
  • Ruhul A. A., Senga T., Oo M. L.: Secretion of matrix metalloproteinase-9 by the proinflammatory cytokine, IL-1beta: a role for the dual signaling pathways. Akt. Erk. Gen. Cel. 2003, 8, 515-523.
  • Stettner R., Bogusiewicz M., Rechberger T.: Rola metaloproteaz macierzowych i ich inhibitorów w progresji raka jajnika – implikacje diagnostyczne i terapeutyczne. Ginekol. Pol. 2009, 80, 47-53.
  • Strachecka A., Borsuk G., Olszewski K., Paleolog J., Gagoś M., Chobotow J.: The effect of amphotericin B on the lifespan, body-surface protein concentrations, and DNA methylation levels of honey bees (Apis mellifera). J. Api. Sci. 2012, 56, 107-113.
  • Strachecka A., Borsuk G., Olszewski K., Paleolog J., Lipiński Z.: Proteolysis on the body surface of pyrethroid-sensitiveand resistant Varroa destructor. Acta Parasit. 2013, 58, 64-69.
  • Strachecka A., Borsuk G., Paleolog J.: Body-surface metalloprotease activity in Apis mellifera L. workers relative to environmental pollution. Med. Weter. 2012, 68, 406-410.
  • Strachecka A., Borsuk G., Paleolog J., Olszewski K., Bajda M., Chobotow J.: Body-surface compounds in Buckfast and Caucasian honey bee workers (Apis mellifera). J. Api. Sci. 2014, 58, 5-15.
  • Strachecka A., Gryzinska M., Krauze M.: Influence of environmental pollution on the protective proteolytic barrier of the honey bee Apis mellifera mellifera. Pol. J Envir. Stud. 2010, 19, 855-859.
  • Strachecka A., Gryzińska M., Krauze M., Grzywnowicz K.: Profile of the body surface proteolytic system in Apis mellifera queens. Czech J. Anim. Sci. 2011, 56, 15-22.
  • Strachecka A., Krauze M., Olszewski K., Borsuk G., Paleolog J., Merska M., Chobotow J., Bajda M., Grzywnowicz K.: Unexpectedly strong effect of caffeine on the vitality of western honeybees (Apis mellifera). Biochem. (Mosc.) 2014, 79, 1192-1201.
  • Strachecka A., Olszewski K., Paleolog J., Borsuk G., Bajda M., Krauze M., Merska M., Chobotow J.: Coenzyme Q10 treatments influence the lifespan and key biochemical resistance systems in the honeybee, Apis mellifera. Arch. Insect. Biochem. Physiol. 2014, 86, 165-179.
  • Strachecka A., Paleolog J., Borsuk G., Olszewski K.: The influence of formic acid on the body surface proteolytic system at different developmental stages in Apis mellifera L. workers. J. Api. Res. 2012, 51, 252-262.
  • Strachecka A., Paleolog J., Grzywnowicz K.: The surface proteolytic activity in Apis mellifera. J. Api. Sci. 2008, 52, 57-68.
  • Strachecka A., Paleolog J., Olszewski K., Borsuk G.: Influence of amitraz and oxalic acid on the cuticle proteolytic system of Apis mellifera L. workers. Insects 2012, 3, 821-832.
  • Visse R., Nagase H.: Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ. Res. 2003, 92, 827-839.
  • Walter R. T., Clélia F.: Insect digestive enzymes: properties, compartmentalization and function. Com. Biochem. Physiol. 1994, 109B, 1-62.
  • Wang T., Yamashita K., Iwata K., Hayakawa T.: Both tissue inhibitors of metalloproteinases-1 (TIMP-1) and TIMP-2 activate Ras but through different pathways. Biochem. Biophys. Res. Commun. 2002, 296, 201-205.
  • Wedde M., Weise C., Kopacek P., Franke P., Vilcinskas P.: Purification and characterization of an inducible metalloprotease inhibitor from the hemolymph of greater wax moth larvae, Galleria mellonella. Eur. J. Biochem. 1998, 255, 535-543.
  • Wedde M., Weise C., Nuck R., Altincicek B., Vilcinskas A.: The insect metalloproteinase inhibitor gene of the lepidopteran Galleria mellonella encodes two distinct inhibitors. Biol. Chem. 2007, 388, 119-127.
  • Wilson C. L., Shirras A. D., Isaac R. E.: Extracellular peptidases of imaginal discs of Drosophila melanogaster. Peptides 2002, 23, 2007-2014.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-c81b16f7-d8fb-423c-b707-f6b2700c30af
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.