Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 23 | 5 |
Tytuł artykułu

Vermicomposting of vegetable wasteamended with different sources of agro-industrial by-product using Lumbricus rubellus

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Vermicomposting of vegetable waste (VW) spiked with multiple sources of agro-industrial waste was conducted in microcosms for 18 days of pre-composting and a subsequent 70 days (10 weeks) of vermicomposting by utilizing epigeic Lumbricus rubellus. Nutrient element and heavy metal content in vermicompost produced were evaluated by comparing with different agro-industrial waste as amended materials. Earthworm multiplication and growth showed the highest increment in 100% of spent mushroom compost (SMC) (+323.72% for biomass and +38.10% for number). Significant differences (P<0.05) between earthworm biomass and number was identified in treatment of 100% cow dung (CD), cow dung:vegetable waste I (CD:VW I), 100% of spent mushroom compost (SMC), and spent mushroom compost:vegetable waste I (SMC:VW I). The highest nutrient element i.e. N, P, and K content in vermicompost was paddy straw:vegetable waste II (PS:VW II) 1.37±0.040, 0.37±0.057, and 1.29±0.050 respectively and the lowest C:N ratio in cow dung:vegetable waste I (CD:VW I) (19.62±0.11), which indicates an advanced degree of compost maturity. Heavy metal, i.e. Cd, Cr, Pb, Cu, and Zn content in vermicompost from all vermibeds were lower compared to the compost limits set by the USA, European countries, and the Malaysian Recommended Site Screening Levels for Contaminated Land (SSLs). Thus, L. rubellus is feasible in bioconverting VW spiked with agroindustrial waste into vermicompost, and the product possesses agronomic potential as well as environmentally sounding in contrast to synthesized chemical fertilizer.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
23
Numer
5
Opis fizyczny
p.1491-1498,fig.,ref.
Twórcy
autor
  • Faculty of Science, Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
  • Faculty of Science, Mushroom Research Center, University of Malaya, 50603 Kuala Lumpur, Malaysia
  • Faculty of Science, Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
  • Faculty of Science, Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
  • Faculty of Science, Mushroom Research Center, University of Malaya, 50603 Kuala Lumpur, Malaysia
autor
  • Faculty of Science, Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
  • Faculty of Science, Mushroom Research Center, University of Malaya, 50603 Kuala Lumpur, Malaysia
Bibliografia
  • 1. NAIR J., SEKIOZOIC V., ANDA M. Effect of pre-com- posting on vermicomposting of kitchen waste. Bioresource Technol. 97, 2091, 2006.
  • 2. BENITEZ E., NOGALES R., MASCIANDARO G., CEC- CANTI B. Isolation by isoelectric focusing of humic urease complexes from earthworm (Eisenia foetida) - processed sewage sludges. Biol. Fert. Soils 31, 489, 2000.
  • 3. EASTMAN B. R., KANE P. N., EDWARDS C. A., TRY- TEK L., GUNADI B., STERMER A. L., MOBLEY J. R. The effectiveness of vermiculture in human pathogen reduc­tion for USEPA biosolids stabilization. Compost Science and Utilization 9, (1), 38, 2001.
  • 4. NDEGWA P. M., THOMPSON S. A., DAS K. C. Effects of stocking density and feeding rate on vermicomposting of biosolids. Bioresource Technol. 71, 5, 2000.
  • 5. NDEGWA P. M., THOMPSON S. A. Intergrating compost­ing and vermicomposting in the treatment and bioconver­sion of biosolids. Bioresource Technol. 76, 107, 2001.
  • 6. NDEGWA P. M., THOMPSON, S. A. Effect of C-to-N ratio on vermicomposting of Biosolids. Bioresource Technol. 75, (1), 7, 2000.
  • 7. AZIZI A. B., NOOR Z. M., NOORLIDAH A., ROSNA M. T. Bioconversion of biomass residue from the cultivation of pea sprouts on spent Pleurotus sajor-caju compost employ­ing Lumbricus rubellus. Maejo Int. J. Sci. Tech. 6, (3), 461, 2012.
  • 8. AZIZI A. B., NOOR Z. M., JAIME T. D. S., NOORLIDAH A., ADI A. J. Vermicomposting of sewage sludge by Lumbricus rubellus using spent mushroom compost as feed material: Effect on concentration of heavy metals. Biotechnol. Bioproc. E. 16, 1036, 2011.
  • 9. AZIZI A. B., LIM M. P. M., NOOR Z. M., NOORLIDAH A. Vermiremoval of heavy metal in sewage sludge by utilis­ing Lumbricus rubellus. Ecotox. Environ. Safe. 90, 13, 2013.
  • 10. LOH T. C., LEE Y. C., LIANG J. B., TAN D. Vermicomposting of cattle and goat manures by Eisenia foetida and their growth and reproduction performance. Bioresource Technol. 96, 111, 2005.
  • 11. HAND P., HAYES W. A., SATCHELL J. E., FRANK­LAND J. C., EDWARDS C. A., NEUHAUSER E. F. The vermicomposting of cow slurry. Earthworms in waste and environmental management, pp. 49, 1988.
  • 12. WALKLEY A., BLACK I. A. Estimation of organic carbon by the chronic acid titration method. Soil Sci. 37, 29, 1934.
  • 13. BREMNER J. M., MULVANEY R. G. Nitrogen total. In: Page A. L., Miller R. H., Keeney D. R., (Eds.) Methods of Soil Analysis. American Society ofAgronomy, Madison, pp. 575, 1982.
  • 14. JOHN M. K. Colorimetric determination of phosphorous in soil and plant materials with ascorbic acid. Soil Sci. 109, 214, 1970.
  • 15. MICHAEL B., BRYAN S. G., KARL R. Food preferences of earthworms for soil fungi. Pedobiologia 44, 666, 2000.
  • 16. SHAHACK-GROSS R. Herbivorous livestock dung: for­mation, taphonomy, methods for identification and archaeo­logical significance. J. Archaeol. Sci. 38, 205, 2010.
  • 17. PLAZA C., NOGALES R., SENESI N., BENITEZ E., POLO A. Organic matter humification by vermicomposting of cattle manure alone and mixed with two-phase olive pomace. Bioresource Technol. 9, 5085, 2008.
  • 18. TRIPATHI G., BHARDWAJ P. Comparative studies on bio­mass production, life cycles and composting efficiency of Eisenia foetida (Savigny) and Lampito mauritii (Kinberg). Bioresource Technol. 92, 275, 2004.
  • 19. SUTHAR S. Vermistabilization of municipal sewage sludge amended with sugarcane trash using epigeic Eisenia fetida (Oligochaeta). J. Hazard. Mater. 163, 199, 2009.
  • 20. SINGH D., SUTHAR S. Vermicomposting of herbal phar­maceutical industry waste: Earthworm growth, plant-avail­able nutrient and microbial quality of end materials. Bioresource Technol. 112, 179, 2012.
  • 21. PRAMANIK P., GHOSH G. K., GHOSAL P. K., BANIK P. Changes in organic-C, N, P and K and enzymatic activities in vermicompost of biodegradable organic wastes under liming and microbial inoculants. Bioresource Technol. 98, 2485, 2007.
  • 22. LE BAYON R. C., BINET F. Earthworm changes the distri­bution and availability of phosphorous in organic substrates. Soil Biol. Biochem. 38, 235, 2006.
  • 23. PRAKASH M., KARMEGAM N. Vermistabilization of press mud using Perionyx ceylanensis Mich. Bioresource Technol. 101, 8464, 2010.
  • 24. OROZCO F. H., CEGARRA J., TRUJILLO L. M., ROIG A. Vermicomposting of coffee pulp using the earthworm Eisenia foetida: effects on C and N contents and the avail­ability of nutrients. Biol. Fert. Soils 22, 162, 1996.
  • 25. GARG V. K., GUPTA R. Optimization of cow dung spiked pre-consumer processing vegetable waste for vermicompost- ing using Eisenia fetida. Ecotox. Environ. Safe. 74, 19, 2011.
  • 26. BANSAL S., KAPOOR K. K. Vermicomposting of crop residues and cattle dung with Eisenia foetida. Bioresource Technol. 73, 95, 2000.
  • 27. KHWAIRAKPAM M., BHARGAVA R. Bioconversion of filter mud using vermicomposting employing two exotic and one local earthworms species. Bioresource Technol. 100, 5846, 2009.
  • 28. SENESI N. Composted materials as organic fertilizers. Sci. Total Environ. 81-82, 521, 1989.
  • 29. BISHOP P. L., GODFREY C. Nitrogen transformation dur­ing sewage composting. Biocycle 24, 34, 1983.
  • 30. WHITTLE A. J., DYSON A. J. The fate of heavy metals in green waste composting. The Environmentalist 22, 13, 2002.
  • 31. MORGAN A. J., MORRIS B. The accumulation and intra­cellular compartmentation of cadmium, lead, zinc and calci­um in two earthworm species (Dendrobaena rubida and Lumbricus rubellus) living in highly contaminated soil. Histochem 75, 269, 1982.
  • 32. SUTHAR S. Pilot-scale vermireactors for sewage sludge stabilization and metal remediation process: Comparison with small-scale vermireactors. Ecol. Eng. 36, 703, 2010.
  • 33. SUTHAR S., SINGH S. Bioconcentrations of metals (Fe, Cu, Zn, Pb) in earthworms (Eisenia fetida), inoculated in municipal sewage sludge: Do earthworms pose a possible risk of terrestrial food chain contamination? Environ. Toxicol. 24, 25, 2009.
  • 34. BRINTON W. F. Compost Quality Standards and Guidelines. Report to New York State Association of Recyclers by Woods Ends Research Laboratory Inc. USA, pp. 15, 2000.
  • 35. DOE (Department of Environment, Malaysia). Contaminated Land Management and Control Guidelines No. 1: Malaysian Recommended Site Screening Levels for Contaminated Land. Retrieved from: http://www.doe.gov.my 2009.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-c6c3c575-82a9-4cbd-a890-df2151e45fb6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.