Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 68 | 04 |
Tytuł artykułu

Neurohormonalne podstawy agresji u ryb

Warianty tytułu
EN
Neurohormonal basis of aggression in fish
Języki publikacji
PL
Abstrakty
EN
Physiological studies of neuroendocrine regulation confirm that aggressive behavior patterns are nearly universal in the animal kingdom. Different species of fish (e.g. Zebra Fish and Siamese Fighting Fish) are used as models for studies of animal behavior, including aggression. Despite an increased risk of injury or death, aggression frequently offers considerable benefits. It is mainly related with competition for limited resources, for example, competition for food or a mate, the establishment of territory and dominance hierarchies (a higher social status). Aggression is a kind of aversive drive to limit the freedom of other animals of the same or other species or to injure or kill them. Territorial behavior is a significant problem in farm and companion animals, not only causing economic losses but also threatening animal health and welfare. The following systems are involved in the regulation of aggressive behavior: the hypothalamo-pituitary-adrenocortical (HPA), sympathetico-medullary-adrenal (SAM), hypothalamo-pituitary-interrenal, serotonin, somatostatin, dopamine, histamine and nitric oxide pathways, as well as brain structures responsible for motivation. The aim of this article is to review the present state of knowledge concerning the neuro-endocrine modulation of aggressive behavior in animals.
Wydawca
-
Rocznik
Tom
68
Numer
04
Opis fizyczny
s.195-198,fot.,bibliogr.
Twórcy
autor
  • Katedra Nauk Fizjologicznych, Wydział Medycyny Weterynaryjnej, Szkoła Główna Gospodarstwa Wiejskiego, ul.Nowoursynowska 159, 02-776 Warszawa
autor
autor
Bibliografia
  • 1. Antunes R. A., Oliveira R. F.: Hormonal anticipation of territorial challenges in cichlid fish. PNAS 2009, 106, 15985-15989.
  • 2. Bondar N. P., Boyarskikh U. A., Kovalenko I. L., Filipenko M. L., Kudryatseva N. N.: Molecular implications of repeated aggression: Th, Dat1, Snca and Bdnf gene expression in the VTA of victorious male mice. Public Library of Science ONE 2009, 4, e4190.
  • 3. Caldwell H. K., Lee H. J., Macbeth A. H., Young W. S.: Vasopressin: behavioural roles of an "original" neuropeptide. Prog. Neurobiol. 2008, 84, 1-24.
  • 4. Carpenter R. E., Korzan W. J., Bockholt C., Watt M. J., Forster G. L., Renner K. J. Summers C. H.: Corticotropin releasing factor influences aggression and monoamines: Modulation of attacks and retreats. Neurosci. 2009, 158, 412-425.
  • 5. Carpenter R. E., Watt M. J., Forster G. L., Overli O., Bockholt C., Renner K. J., Summers C. H.: Corticotrophin releasing factor induces anxiogenic locomotion in trout and alters serotonergic and dopaminergic activity. Hormones Behav. 2007, 52, 600-611.
  • 6. Clotfelter E. D., O’Hare E. P., McNitt M. M., Carpenter R. E., Summers C. H.: Serotonin decreases aggression via 5-HT1A receptors in the fighting fish Betta splendens. Pharmacol. Bioch. Behav. 2007, 87, 222-231.
  • 7. Desjardins J. K., Fernald R. D.: What do fish make of mirror images? Biol. Let. 2010, 6, 744-747.
  • 8. DiBattista J. D., Anisman H., Whitehead M., Gilmour K. M.: The effects of cortisol administration on social status and brain monoaminergic activity in rainbow trout Oncorhynchus mykiss. J. Exp. Biol. 2005, 208, 2707-2718.
  • 9. Donaldson Z. R., Young L. J.: Oxytocin, vasopressin, and the neurogenetics of sociality. Science 2008, 322, 900-904.
  • 10. Elkabir D. R., Wyatt M. E., Vellucci S. V., Herbert J.: The effects of separate or combined infusions of corticotrophin-releasing factor and vasopressin either intraventricularly or into the amygdala on aggressive and investigative behaviour in the rat. Regul. Peptides 1990, 28, 199-214.
  • 11. Feldker D. E. M., de Kloet E. R., Kruk M. R., Datson N. A.: Large-scale gene expression profiling of discerete brain regions: potential, limitations, and application in genetics of aggressive behavior. Behav. Genetics 2003, 33, 537-548.
  • 12. Ferris C. F., Melloni R. H., Koppel G., Perry K. W., Fuller R. W., Delville Y.: Vasopressin/serotonin interactions in the anterior hypothalamus control aggressive behavior in golden hamsters. J. Neurosci. 1997, 17, 4331-4340.
  • 13. Ferris C. F., Stolberg T., Kulkarni P., Murugavel M., Blanchard R., Blanchard D. C., Febo M., Brevard M., Simon N. G.: Imaging the neural circuitry and chemical control of aggressive motivation. BMC Neurosci. 2008, 9, 111.
  • 14. Filby A. L., Paull G. C., Hickmore T. F. A., Tyler C. R.: Unravelling the neurophysiological basis of aggression in a fish model. BMC Genomics 2010, 11, 498.
  • 15. Kania B. F., Gralak M. A., Górska M., Wielgosz M.: Four-week fluoxetine (SSRI) exposure diminishes aggressive behaviour of male Siamese fighting fish (Betta splendens). J. Brain Behav. Sci. 20011 (w druku).
  • 16. Leng G., Meddle S. L., Douglas A. J.: Oxytocin and the maternal brain. Curr. Opin. Pharmacol. 2008, 8, 731-734.
  • 17. Lowry C. A., Moore F. L.: Regulation of behavioral responses by corticotrophin-releasing factor. Gen. Comp. Endocrinol. 2006, 146, 19-27.
  • 18. Lynn S. E., Egar J. M., Walker B. G., Sperry T. S., Ramenofsky M.: Fish on Prozac: a simple, noninvasive physiology laboratory investigating the mechanisms of aggressive behavior in Betta splendens. Adv. Physiol. Educ. 2007, 31, 358-363.
  • 19. Nelson R. J., Chiavegatto S.: Molecular basis of aggression. Trends in Neurosci. 2001, 24, 713-719.
  • 20. Northcutt R. G.: Evolution of the telencephalon in nonmammals. Ann. Rev. Neurosci. 1981, 4, 301-350.
  • 21. Onodera K., Yamatodani A., Watanabe T.: Effect of alphafluoromethylhistidine on brain histamine and noradrenaline in muricidal rats. Methods Find. Exp. Clin. Pharmacol. 1993, 15, 423-427.
  • 22. Øverli Ø., Kotzian S., Winberg S.: Effects of cortisol on aggression and locomotor activity in rainbow trout. Hormones Behav. 2002a, 42, 53-61.
  • 23. Paul G. C., Filby A. L., Giddins H. G., Coe T. S., Hamilton P. B., Tyler C. T.: Dominance hierarchies in zebrafish (Danio rerio) and their relationship with reproductive success. Zebrafish 2010, 7, 109-117.
  • 24. Perrault H. A. N., Semsar K., Godwin J.: Fluoxetine treatment decreases territorial aggression in a coral reef Fish. Physiol. Behav. 2003, 79, 719-724.
  • 25. Santangelo N., Bass A. H.: New insights into neuropeptide modulation of aggression: field studies of arginine vasotocin in a territorial tropical damselfish. Proc. Royal Soc. B 2006, 273, 3085-3092.
  • 26. Sapolsky R. M.: The influence of social hierarchy on primate health. Science 2005, 308, 648-652.
  • 27. Tazi A., Dantzer R., Le Moal M., Rivier J., Vale W., Koob G. F.: Corticotrophin releasing factor antagonist blocks stress-induced fighting in rats. Regul. Peptides 1987, 18, 37-42.
  • 28. Vollmayr B., Keck S., Henn F. A., Schloss P.: Acute stress decreases serotonin transporter mRNA in the raphe pontis but not in other raphe nuclei of the rat. Neurosci. Lett. 2000, 290, 109-112.
  • 29. White S. A., Nquyen T., Fernald R. D.: Social regulation of gonadotropin releasing hormone. J. Exp. Biol. 2002, 205, 2567-2581.
  • 30. Yanai K., Son L. Z., Endou M., Sakurai E., Nakagawasai O., Tadano T., Kisara K., Inoue I., Watanabe T., Watanabe T.: Behavioural characterization and amounts of brain monoamines and their metabolites in mice lacking histamine H1 receptors. Neurosci. 1998, 87, 479-487.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-c4666ceb-07dd-4ea0-b779-86946691349d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.