Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 06 |
Tytuł artykułu

Copy number variations of functional genes influence contents of glycyrrhizic acid in Glycyrrhiza uralensis

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Glycyrrhiza uralensis is a widely used Chinese herb and glycyrrhizic acid is believed to be its marker compound. Three key enzymes, 3-hydroxy-3-methylglutaryl CoA reductase (HMGR), squalene synthase (SQS) and beta-amyrin synthase (β-AS), are involved in the glycyrrhizic acid biosynthetic pathway. In this paper, the relationship between copy number variations (CNVs) of HMGR, SQS and β-AS genes and the content levels of glycyrrhizic acid in G. uralensis were investigated. CNVs of the 62 G. uralensissamples from different origins were determined by real-time PCR and their glycyrrhizic acid contents were analyzed by HPLC. The real-time PCR results showed that the copy numbers of HMGR, SQS1 and β-AS in the 62 G. uralensis samples were either one copy or two copies. According to the copy number patterns of HMGR, SQS1 and β-AS, the 62 G. uralensis samples can be divided into six groups. Among the six groups, group B with two copies of HMGR, one copy of SQS1 and β-AS contained relatively higher contents of glycyrrhizic acid. The accumulation of glycyrrhizic acid was lower in the group C with two copies of β-AS, one copy of SQS1 and HMGR. The results of this work may provide a basis for enhancing the accumulation of glycyrrhizic acid in cultivars of G. uralensis.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
36
Numer
06
Opis fizyczny
p.1433-1440,fig.,ref.
Twórcy
autor
  • School of Chinese Pharmacy, Beijing University of Chinese Medicine, 100102 Beijing, China
autor
  • School of Chinese Pharmacy, Beijing University of Chinese Medicine, 100102 Beijing, China
autor
  • Department of Antibiotic, Beijing Institute for Drug Control, 100035 Beijing, China
autor
  • School of Chinese Pharmacy, Beijing University of Chinese Medicine, 100102 Beijing, China
autor
  • School of Chinese Pharmacy, Beijing University of Chinese Medicine, 100102 Beijing, China
autor
  • School of Chinese Pharmacy, Beijing University of Chinese Medicine, 100102 Beijing, China
autor
  • School of Chinese Pharmacy, Beijing University of Chinese Medicine, 100102 Beijing, China
autor
  • School of Chinese Pharmacy, Beijing University of Chinese Medicine, 100102 Beijing, China
Bibliografia
  • Aquil S, Husaini AM, Abdin MZ, Rather GM (2009) Overexpression of the HMG-CoA reductase gene leads to enhanced artemisinin biosynthesis in transgenic Artemisia annua plants. Planta Med 75(13):1453–1458. doi:10.1055/s-0029-1185775
  • Ausubel FM, Kinston RE, Seidman JG, Strahl K, Brent R, Moore DD, Smith JA (2005) Short protocols in molecular biology. In: E. coli, plasmid and bacteriophage, p 25, 1st edn. Science Press, Beijing
  • Beckmann JS, Estivill X, Antonarakis SE (2007) Copy number variants and genetic traits: closer to the resolution of phenotypic to genotypic variability. Nat Rev Genet 8:639–646. doi:10.1038/nrg2149
  • Chappell J, Nable R (1987) Induction of sesquiterpenoid biosynthesis in tobacco cell suspension cultures by fungal elicitors. Plant Physiol 85:469–473. doi:10.1104/pp.85.2.469
  • Cherng JM, Lin HJ, Hsu YH, Hung MS, Lin JC (2004) A quantitative bioassay for HIV-1 gene expression based on UV activation effect of glycyrrhizic acid. Antiviral Res 62:27–36. doi:10.1364/JOSAA.25.000335
  • Dai ZB, Cui GH, Zhou SF, Zhang XN, Huang LQ (2011) Cloning and characterization of a novel 3-hydroxy-3-methylglutaryl coenzyme-A reductase gene from Salvia miltiorrhiza involved in diterpenoid tanshinone accumulation. J Plant Physiol 168:148–157. doi:10.1016/j.jplph.2010.06.008
  • Friesen JA, Rodwell VW (2004) The 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductases. Genome Biol 5:248–254. doi:10.1186/gb-2004-5-11-248
  • Harker M, Holmberg N, Clayton JC, Gibbard CL, Wallace AD, Rawlins S, Hellyer SA, Lanot A, Safford R (2003) Enhancement of seed phytosterol levels by expression of an N-terminal truncated Hevea brasiliensis (rubber tree) 3-hydroxy-3-methyl-glutaryl CoA reductase. Plant Biotechnol J 1:113–121. doi:10.1046/j.1467-7652.2003.00011.x
  • Hastings PJ, Lupski JR, Rosenberg SM, Ira G (2009) Mechanisms of change in gene copy number. Nat Rev Genet 10:551–564. doi:10.1038/nrg2593
  • Hayashi H, Huang PY, Kirakosyan A, Inoue K, Hiraoka N, Ikeshiro Y, Kushiro T, Shibuya M, Ebizuka Y (2001) Cloning and characterization of a cDNA encoding β-amyrin synthase involved in glycyrrhizin and soyasaponin biosyntheses in Licorice. Biol Pharm Bull 24:912–916. doi:10.1248/bpb.24.912
  • Hayashi H, Huang PY, Inoue K (2003) Up-regulation of soyasaponin biosynthesis by methyl Jasmonate in cultured cells of Glycyrrhiza glabra. Plant Cell Physiol 44(4):404–411. doi:10.1093/pcp/pcg054
  • Hoever G, Bzltina L, Michaelis M (2005) Antiviral activity of glycyrrhizic acid derivatives against SARS-coronavirus. J Med Chem 48:1256–1259. doi:10.1021/jm0493008
  • Kang TW, Jeon YJ, Jang E, Kim HJ, Kim JH, Park JL, Lee S, Kim YS, Kim JY, Kim SY (2008) Copy number variations (CNVs) identified in Korean individuals. BMC Genom 9:492–499. doi:10.1186/1471-2164-9-492
  • Kribii R, Arro M, Arco AD, Gonzalez V, Balcells L, Delourme D, Ferrer A, Karst F, Boronat A (1997) Cloning and characterization of the Arabidopsis thaliana SQS1 gene encoding squalene synthase involvement of the C-terminal region of the enzyme in the channeling of squalene through the sterol pathway. Eur J Biochem 249:61–69. doi:10.1111/j.1432-1033.1997.00061.x
  • Lee MH, Jeong JH, Seo JW, Shin CG, Kim YS, In JG, Yang DC, Yi JS, Choi YE (2004) Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene. Plant Cell Physiol 45:976–984. doi:10.1093/pcp/pch126
  • Liu Y, Liu CS (2012) Study on the spatial and temporal expression of β-AS gene of Glycyrrhiza uralensis. J Chin Med Mater 35(4):528–531
  • Liu Y, Liu DJ, Liu CS, Liao CL, Cheng XL (2012a) Mechanism of genuineness of liquorice Glycyrrhiza uralensis based on CNVs of HMGR, SQS1 and β-AS gene. Acta Pharm Sin 47(2):250–255
  • Liu Y, Liu DJ, Liu CS (2012b) Establishment of detection system of CNVs of HMGR, SQS1, β-AS synthase gene of Glycyrrhiza uralensis. China J Chin Mater Med 37(3):283–287. doi:10.4268/cjcmm20120305
  • Lu HY, Liu JM, Zhang HC, Yin T, Gao SL (2008) Ri-mediated transformation of Glycyrrhiza uralensis with a squalene synthase gene (GuSQS1) for production of glycyrrhizin. Plant Mol Biol Rep 26:1–11. doi:10.1007/s11105-008-0018-7
  • Mirjalili MH, Moyano E, Bonfill M, Cusido RM, Palazon J (2011) Overexpression of the Arabidopsis thaliana squalene synthase gene in Withania coagulans hairy root cultures. Biol Plant 55(2):357–360. doi:10.1007/s10535-011-0054-2
  • Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H, Shapero MH, Carson AR, Chen W, Cho EK, Dallaire S, Freeman JL, Gonzalez JR, Gratacos M, Huang J, Kalaitzopoulos D, Komura D, MacDonald JR, Marshall CR, Mei R, Montgomery L, Nishimura K, Okamura K, Shen F, Somerville MJ, Tchinda J, Valsesia A, Woodwark C, Yang FT, Zhang JJ, Zerjal T, Zhang J, Armengol L, Conrad DF, Estivill X, Smith CT, Carter NP, Aburatani H, Lee C, Jones KW, Scherer SW, Hurles ME (2006) Global variation in copy number in the human genome. Nat 444(7118):444–454. doi:10.1038/nature05329
  • Sasaki H, Takei M, Kobayashi M, Pollard RB, Suzuki F (2002) Effect of glycyrrhizin, an active component of licorice roots, on HIV replication in cultures of peripheral blood mononuclear cells from HIV-seropositive patients. Pathobiology 70:229–236. doi:10.1159/000069334
  • Schaller H, Grausem B, Benveniste P (1995) Expression of the Hevea brasiliensis (H.B.K) Mull. Arg. 3-hydroxy-3-methylglutaryl coenzyme A reductase 1 in tobacco results in sterol overproduction. Plant Physiol 109(3):761–770. doi:10.1104/pp.109.3.761
  • Seo JW, Jeong JH, Shin CG, Lo SC, Han SS, Yu KW, Harada E, Han JY, Choi YE (2005) Overexpression of squalene synthase in Eleutherococcus senticosus increases phytosterol and triterpene accumulation. Phytochemistry 66:869–877. doi:10.1016/j.phytochem.2005.02.016
  • Shibata S (2000) A drug over the millennia: pharmacognosy, chemistry, and pharmacology of licorice. Yakugaku Zasshi 120:849–862. doi:10.1002/chin.200106236
  • State Pharmacopoeia Committee (2010) Pharmacopoeia of China. In: Part 1. pp 80–81. Chemical Industry Press, Beijing
  • Stranger BE, Forrest MS, Dunning M, Ingle CE, Beazley C, Thorne N, Redon R, Bird CP, Grassi A, Lee C (2007) Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 315:848–853. doi:10.1126/science.1136678
  • Van Rossum TG, Vulto AG (1999) Intravenous glycyrrhizin for the treatment of chronic hepatitis C: a double blind, randomized, placebo-controlled phase I/II trial. J Gastroenterol Hepatol 14:1093–1099. doi:10.1016/j.optcom.2007.03.047
  • Wang Z, Guhling O, Yao R, Li F, Yeats TH, Rose JKC, Jetter R (2011) Two oxidosqualene cyclases responsible for biosynthesis of tomato (Solanum lycopersicum) fruit cuticular triterpenoids. Plant Physiol 155:540–552. doi:10.1104/pp.110.162883
  • Yang ZB, Park H, Lacy GH, Cramer CL (1991) Differential activation of potato 3-hydroxy-3-methylglutaryl coenzyme a reductase genes by wounding and pathogen challenge. Plant Cell 3:397–405. doi:10.1105/tpc.3.4.397
  • Zeng L, Li SH, Lou ZC (1988) Morphological and histological studies of Chinese licorice. Acta Pharm Sin 23:200–208. doi: cnki: ISSN: 0513-4870.0.1988-03-007
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-c37dce96-0d84-4d59-9626-6d2090bbf160
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.