Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 14 | 2 |
Tytuł artykułu

Dextrocardia in short-nosed fruit bats (Cynopterus sphinx) and their relative heart masses

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Autopsies carried out on 26 short-nosed fruit bats (Cynopterus sphinx, Pteropodidae, Chiroptera) from Guangdong Province, South China, revealed that the hearts of three individuals were found lying in the right hemithoracic cavity with their base-to-apex axes directed to the right. This is the reverse of what is normally seen in mammals and is similar to the rare congential heart defect known as dextrocardia which has been described in humans. A comparison of the two orientated hearts found that there was no significant difference in heart mass (MH) or relative heart mass (RHM). We observed that the short-nosed fruit bat has higher RHM compared to non-flying mammals but lower RHM when compared to insectivorous bats, and similar RHM when compared to those of other fruit bats.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
14
Numer
2
Opis fizyczny
p.497-499,ref.
Twórcy
autor
  • Institute of Zoology; Chinese Academy of Sciences, 1-5 Beichen Xilu, Chaoyang District, Beijing, 100101 China
autor
  • Guangdong Entomological Institute, 105 Xingang Xilu, Haizhu District, Guangzhou, 510260 China
  • School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 IUG, Great Britain
autor
  • Guangdong Entomological Institute, 105 Xingang Xilu, Haizhu District, Guangzhou, 510260 China
Bibliografia
  • 1. M. C Abduch , P. L. Tonini , L. D. Barbusci , S. M. De Oliveira , and R. R. De Freitas . 2003. Double-outlet right ventricle associated with discordant atrioventricular conection and dextrocardia in a cat. The Journal of Small Animal Practice, 44: 374–377. Google Scholar
  • 2. C. M. Bishop 1997. Heart mass and the maximum cardiac output of birds and mammals: implications for estimating the maximum aerobic power input of flying animals. Philosophical Transactions of the Royal Society of London, 352B: 447–456. Google Scholar
  • 3. C. M. Bohun , J. E. Potts , B. M. Casey , and G. G. Sandor . 2007. A population-based study of cardiac malformations and outcomes associated with dextrocardia. American Journal of Cardiology, 100: 305–309. Google Scholar
  • 4. T. Brand 2003. Heart development: molecular insights into cardiac specification and early morphogenesis. Developmental Biology, 258: 1–19. Google Scholar
  • 5. R. D. Bullen , N. L. Mckenzie , K. E. Bullen , and M. R. Williams . 2009. Bat heart mass: correlation with foraging niche and roost preference. Australian Journal of Zoology, 57: 399–408. Google Scholar
  • 6. C. B. Carrig , P. F. Suter , G. O. Ewing , and D. L. Dungworth . 1974. Primary dextrocardia with situs inversus, associated with sinusitis and bronchitis in a dog. Journal of the American Veterinary Medical Association, 164: 1127–1134. Google Scholar
  • 7. W. Grossman , D. Jones , and L. P. Mclaurin . 1975. Wall stress and patterns of hypertrophy in the human left ventricle. Journal of Clinical Investigation, 56: 56–64. Google Scholar
  • 8. K. D. Jurgens , H. Bartels , and R. Bartels . 1981. Blood oxygen transport and organ weights of small bats and small non-flying mammals. Respiration Physiology, 45: 243–260. Google Scholar
  • 9. M. Lev , R. R. Liberthson , F. A. Eckner , and R. A. Arcilla . 1968. Pathologic anatomy of dextrocardia and its clinical implications. Circulation, 37: 979–999. Google Scholar
  • 10. M. Mahendrakar , and G. S. Seth . 2004. Cardiac anatomy — viewed through the eyes of clinicians. Journal of Anatomical Society of India, 53: 44–48. Google Scholar
  • 11. P. D. Maldjian, and M. Saric. 2007. Approach to dextrocardia in adults: review. American Journal of Roentgenology, 188: S39–49. Google Scholar
  • 12. C. Mauricio , A. Cristlan , G. Bruno , and I. Jose . 2005. Relative size of hearts and lungs of small bats. Acta Chiropterologica, 7: 65–72. Google Scholar
  • 13. N. Pauziene , D. H. Pauza , and R. Stropus . 2000. Morphological study of the heart innervation of bats Myotis daubentoni and Eptesicus serotinus (Microchiroptera: Vespertilionidae) during hibernation. European Journal of Morphology, 38: 195–205. Google Scholar
  • 14. U. Rowlatt 1967. Functional anatomy of the heart of the fruiteating bat, Eidolon helvum, Kerr. Journal of Morphology, 123: 213–230. Google Scholar
  • 15. C. N. Tagoe , A. S. Ayettey , E. Dennis , and R. D. Yates . 1995. Ultrastructural and morphometric features of nodal and impulse-conducting cardiac myocytes of the bat Pipistrellus pipistrellus. Italian Journal of Anatomy and Embryology, 100 (Supplement 1): 273–286. Google Scholar
  • 16. I. L. Tonkin , and A. K. Tonkin . 1982. Visceroatrial situs abnormalities: sonographic and computed tomographic appearance. American Journal of Roentgenology, 138: 509–515. Google Scholar
  • 17. R. Vanpraagh , S. Vanpraagh , P. Vlad , and J. D. Keith . 1964. Anatomic types of congenital dextrocardia: diagnostic and embryologie implications. American Journal of Cardiology, 13:510–531. Google Scholar
Uwagi
rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-c36080e0-05a0-4505-97be-fef7415d2145
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.