Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 73 | 01 |
Tytuł artykułu

Rosnące znaczenie genomiki w rozpoznawaniu chorób zakaźnych zwierząt z uwzględnieniem potrzeb OIE

Warianty tytułu
EN
Increasing importance of genomics in recognition of infectious animal diseases taking into account OIE requirements
Języki publikacji
PL
Abstrakty
EN
Currently, the diagnosis methods applied in bacteriology and virology are frequently focused at modern molecular methods such as polymerase chain reaction (PCR), real-time PCR, loop-mediated isothermal amplification (LAMP) or confirmatory methods for already identified infectious agents of animals such as high throughput sequencing – HTS, or next-generation sequencing (NGS). A number of these methods are officially recommended by the World Organisation for Animal Health (OIE) for the routine diagnosis of major animal diseases with the greatest economical impact. The aim of this paper is to provide to a reader an overview on recent genomic methods used in diagnosis of infectious animal diseases along with their advantages and limitations. These methods facilitate efficient and reliable identification of animal pathogens and allow to characterize and sometimes to identify a newly recognized species of bacteria and viruses.
Wydawca
-
Rocznik
Tom
73
Numer
01
Opis fizyczny
s.10-14,bibliogr.
Twórcy
  • Zakład Chorób Świń, Państwowy Instytut Weterynaryjny - Państwowy Instytut Badawczy w Puławach, Al. Partyzantów 57, 24-100 Puławy
  • Zakład Chorób Świń, Państwowy Instytut Weterynaryjny - Państwowy Instytut Badawczy w Puławach, Al. Partyzantów 57, 24-100 Puławy
autor
  • Zakład Chorób Świń, Państwowy Instytut Weterynaryjny - Państwowy Instytut Badawczy w Puławach, Al. Partyzantów 57, 24-100 Puławy
Bibliografia
  • Beer M., Conraths F. J., Van der Poel W. H.: ‘Schmallenberg virus’: a novel orthobunyavirus emerging in Europe. Epidemiol. Infect. 2013, 131, 1-8.
  • Beerenwinkel N.: Ultra-deep sequencing analysis of viral populations. Curr. Opin. Virol. 2011, 1, 413-418.
  • Belák S.: Molecular diagnosis of viral diseases, present trends and future aspects: a view from the OIE Collaborating Centre for the application of polymerase chain reaction methods for diagnosis of viral diseases in veterinary medicine. Vaccine 2007, 30, 5444-5452.
  • Boyle D. B., Bulach D. M., Amos-Ritchie R., Adams M. M., Walker P. J., Weir R.: Genomic sequences of Australian bluetongue virus prototype serotypes reveal global relationships and possible routes of entry into Australia. J. Virol. 2012, 86, 6724-6731.
  • Brar M. S., Shi M., Hui R. K., Leung F. C.: Genomic evolution of porcine reproductive and respiratory syndrome virus (PRRSV) isolates revealed by deep sequencing. PLoS One 2014, 9, e88807.
  • Buchan B. W., Ledeboer N. A.: Emerging technologies for the clinical microbiology laboratory. Clin. Microbiol. Rev. 2014, 27, 783-822.
  • Carrillo C., Lu Z., Borca M. V., Vagnozzi A., Kutish G. F., Rock D. L.: Genetic and phenotypic variation of foot-and-mouth disease virus during serial passages in a natural host. J. Virol. 2007, 81, 11341-11351.
  • Chapman D. A., Darby A. C., Da Silva M., Upton C., Radford A. D., Dixon L. K.: Genomic analysis of highly virulent Georgia 2007/1 isolate of African swine fever virus. Emerg. Infect. Dis. 2011, 17, 599-605.
  • Chen H. T., Zhang J., Ma L. N., Ma Y. P., Ding Y. Z., Liu X. T., Chen L., Ma L. Q., Zhang Y. G., Liu Y. S.: Rapid pre-clinical detection of classical swine fever by reverse transcription loop-mediated isothermal amplification. Mol. Cell Probes. 2009, 23, 71-74.
  • Chen H. T., Zhang J., Sun D. H., Chu Y. F., Cai X. P., Liu X.T., Luo X. N., Liu Q., Liu Y. S.: Rapid detection of porcine circovirus type 2 by loop-mediated isothermal amplification. J. Virol. Methods 2008, 149, 264-268.
  • Chen H. T., Zhang J., Sun D. H., Ma L. N., Liu X. T., Quan K., Liu Y. S.: Reverse transcription loop-mediated isothermal amplification for the detection of highly pathogenic porcine reproductive and respiratory syndrome virus. J. Virol. Methods 2008, 153, 266-268.
  • Chen P. E., Shapiro B. J.: The advent of genome-wide association studies for bacteria. Curr. Opin. Microbiol. 2015, 25, 17-24.
  • Coffey L. L., Page B. L., Greninger A. L., Herring B. L., Russel R. C., Doggett S. L., Haniotis J., Wang C., Deng X., Delwart, Fredricks D. N., Relman D. A.: Sequence-based identification of microbial pathogens: a reconsideration of Koch’s postulates. Clin. Microbiol. Rev. 1996, 9, 18-33.
  • Gu H., Qi X., Li X., Jiang H., Wang Y., Liu F., Lu S., Yang Y., Liu F.: Rapid and specific detection of H3 swine influenza virus using reverse transcription loop-mediated isothermal amplification method. J. Appl. Microbiol. 2010, 108, 1145-1154.
  • Hao W., Allen V. G., Jamieson F. B., Low D. E., Alexander D. C.: Phylogenetic incongruence in E. coli O104: understanding the evolutionary relationships of emerging pathogens in the face of homologous recombination. PLoS One 2012, 7, e33971.
  • Harasawa R., Koshimizu K., Takeda O., Uemori T., Asada K., Kato I.: Detection of Mycoplasma hyopneumoniae DNA by the polymerase chain reaction. Mol. Cell Probes 1991, 5, 103-109.
  • Hoper D., Hoffmann B., Beer M.: A comprehensive deep sequencing strategy for full-length genomes of influenza A. PLoS One 2011, 6, e19075.
  • James H. E., Ebert K., McGonigle R., Reid S. M., Boonham N., Tomlinson J. A., Hutchings G. H., Denyer M., Oura C. A., Dukes J. P., King D. P.: Detection of African swine fever virus by loop-mediated isothermal amplification. J. Virol. Methods 2010, 164, 68-74.
  • Kampmann M. L., Fordyce S. L., Avila-Arcos M. C., Rasmussen M., Willerslev E., Nielsen L. P., Gilbert M. T.: A simple method for the parallel deep sequencing of full influenza A genomes. J. Virol. Methods 2011, 178, 243-248.
  • Logan G., Freimanis G. L., King D. J., Valdazo-González B., Bachanek-Bankowska K., Sanderson N. D., Knowles N. J., King D. P., Cottam E. M.: A universal protocol to generate consensus level genome sequences for foot-and-mouth disease virus and other positive-sense polyadenylated RNA viruses using the Illumina MiSeq. BMC Genomics 2014, 30, 828.
  • Liu S. T., Li S. N., Wang D. C., Chang S. F., Chiang S. C., Ho W. C., Chang Y. S., Lai S. S.: Rapid detection of hog cholera virus in tissues by the polymerase chain reaction. J. Virol. Methods 1991, 35, 227-236.
  • Maes R. K., Beisel C. E., Spatz S. J., Thacker B. J.: Polymerase chain reaction amplification of pseudorabies virus DNA from acutely and latently infected cells. Vet. Microbiol. 1990, 24, 281-295.
  • Maiden M. C., Jansen van Rensburg M. J., Bray J. E., Earle S. G., Ford S. A., Jolley K. A., McCarthy N. D.: MLST revisited: the gene-by-gene approach to bacterial genomics. Nat. Rev. Microbiol. 2013, 11, 728-736.
  • Mathijs E., Vandenbussche F., Van Borm S.: Using genomics for surveillance of veterinary infectious agents. Rev. Sci. Tech. Off. Int. Epiz. 2016, 35, 143-157.
  • McNally A.: Veterinary applications of real-time PCR for detection and diagnosis of infectious agents, [w:] Real-time PCR: advanced technologies and applications (M. A. Lee, N. A. Saunders, eds). Caister Academic Press, Norfolk 2015, 111-122.
  • Mullis K., Faloona F., Scharf S., Saiki R., Horn G., Erlich H.: Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb. Symp. Quant. Biol. 1986, 51, 263-273.
  • Network of Expertise on Animal Influenza (OFFLU). OFFLU strategy document for surveillance and monitoring of influenzas in animals. Dostępne pod adresem: www.offlu.net/fileadmin/home/en/publications/pdf/OFFLUsurveillance.pdf. (dostęp 25.08.2016).
  • O’Donnell V., Holinka L. G., Krug P. W., Gladue D. P., Carlson J., Sanford B., Alfano M., Kramer E., Lu Z., Arzt J., Reese B., Carrillo C., Risatti G. R., Borca M. V.: African Swine Fever Virus Georgia 2007 with a Deletion of Virulence-Associated Gene 9GL (B119L), when Administered at Low Doses, Leads to Virus Attenuation in Swine and Induces an Effective Protection against Homologous Challenge. J. Virol. 2015, 89, 8556-8566.
  • Parida M., Posadas G., Inoue S., Hasebe F., Morita K.: Real-Time reverse transcription loop-mediated isothermal amplification for rapid detection of West Nile Virus. J. Clin. Microbiol. 2004, 42, 257-263.
  • Rao P. P., Reddy Y. N., Ganesh K., Nair S. G., Niranjan V., Hegde N. R.: Deep sequencing as a method of typing bluetongue virus isolates. J. Virol. Meth. 2013, 193, 314-319.
  • Rivers T. M.: Viruses and Koch’s postulates. J. Bacteriol. 1937, 33, 1-12.
  • Sachsenröder J. T. S., Hammerl J. A, Janczyk P., Wrede P., Hertwig S., Johne R.: Simultaneous identification of DNA and RNA viruses present in pig faeces using process-controlled deep sequencing. PLoS One, 2012, 7, e34631.
  • Sanger F., Nicklen S., Coulson A. R.: DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 1997, 74, 5463-5467.
  • Schadt E. E., Turner S., Kasarskis A.: A window into third-generation sequencing. Hum. Molec. Genet. 2010, 19, 227-240.
  • Shi X., Liu X., Wang Q., Das A., Ma G., Xu L., Sun Q., Peddireddi L., Jia W., Liu Y., Anderson G., Bai J., Shi J.: A multiplex real-time PCR panel assay for simultaneous detection and differentiation of 12 common swine viruses. J. Virol. Methods 2016, 236, 258-265.
  • Slomka M. J., Densham A. L., Coward V. J., Essen S., Brookes S. M., Irvine R. M., Spackman E., Ridgeon J., Gardner R., Hanna A., Suarez D. L., Brown I. H.: Real-time reverse transcription (RRT)-polymerase chain reaction (PCR) methods for detection of pandemic (H1N1) 2009 influenza virus and European swine influenza A virus infections in pigs. Influenza Other Respir. Viruses 2010, 4, 277-293.
  • Sirois M., Lemire E. G., Levesque R. C.: Construction of a DNA probe and detection of Actinobacillus pleuropneumoniae by using polymerase chain reaction. J. Clin. Microbiol. 1991, 29, 1183-1187.
  • World Organisation for Animal Health (OIE) (2015). Manual of diagnostic tests for aquatic animals, 17th Ed. OIE, Paris. Dostęp pod adresem: www.oiet.int/international-standard-setting/aquatic-manual/access-online/). (dostęp 25.08.2016).
  • Woźniakowski G., Frączyk M., Kowalczyk A., Pomorska-Mól M., Pejsak Z.: Polymerase cross-linking spiral reaction (PCLSR) for detection of African swine fever virus (ASFV) in pigs and wild boars. Nat. Sci. Rep. 2016 (w druku).
  • Woźniakowski G., Kozdruń W., Samorek-Salamonowicz E.: Loop-mediated isothermal amplification for the detection of goose circovirus. Virol. J. 2012, 9, 110. DOI:10.1186/1743-422X-9-110.
  • Wright C. F., Morelli M. J., Thébaud G., Knowles N. J., Herzyk P., Paton D. J., Haydon D. T., King D. P.: Beyond the consensus: dissecting within-host viral population diversity of foot-and-mouth disease virus by using next-generation genome sequencing. J. Virol. 2011, 85, 2266-2275.
  • Yoshida H., Sakoda Y., Endo M., Motoshima M., Yoshino F., Yamamoto N., Okamatsu M., Soejima T., Senba S., Kanda H., Kida H.: Evaluation of the reverse transcription loop-mediated isothermal amplification (RT-LAMP) as a screening method for the detection of influenza viruses in the fecal materials of water birds. J. Vet. Med. Sci. 2011, 73, 753-758.
  • 43. Zhou W., Gao S., Podgórska K., Stadejek T., Qiu H. J., Yin H., Drew T., Liu L.: Rovac is the possible ancestor of the Russian lapinized vaccines LK-VNIVViM and CS strains but not the Chinese strain (C-strain) vaccine against classical swine fever. Vaccine 2014, 20, 6639-6642.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-c210debd-4712-4c7c-9e5c-c9b6dd880d0a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.