Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 32 | 6 |
Tytuł artykułu

Overexpression of malate dehydrogenase in transgenic tobacco leaves: enhanced malate synthesis and augmented Al-resistance

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Numerous studies with transgenic plants have demonstrated that overexpression of enzymes related to organic acid metabolism under the control of CaMV 35S promoter increased organic acid exudation and Al-resistance. The synthesis of organic acids requires a large carbon skeleton supply from leaf photosynthesis. Thus, we produced transgenic tobacco overexpressing cytosolic malate dehydrogenase (MDH) cDNA from Arabidopsis thaliana (amdh) and the MDH gene from Escherichia coli (emdh), respectively, under the control of a leaf-specific light-inducible promoter (Rubisco small subunit promoter, PrbcS) in the present study. Our data indicated that an increase (120–130%) in MDH-specific activity in leaves led to an increase in malate content in the transgenic tobacco leaves and roots as well as a significant increase in root malate exudation compared with the WT plants under the acidic (pH 4.5) conditions irrespective of 300 μM Al³⁺ stress absence or presence. After being exposed to 25 μM Al³⁺ in a hydroponic solution, the transgenic plants exhibited stronger Al-tolerance than WT plants and the degree of A1 tolerance in the transgenic plants corresponded with the amount of malate secretion. When grown in an Al-stress perlite medium, the transgenic tobacco lines showed better growth than the WT plants. The results suggested that overexpression of MDH driven by the PrbcS promoter in transgenic plant leaves enhanced malate synthesis and improved Al-resistance.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
32
Numer
6
Opis fizyczny
p.1209-1220,fig.,ref.
Twórcy
autor
  • Biotechnology Research Center, Kunming University of Science and Technology, Kunming 650224, China
autor
  • Biotechnology Research Center, Kunming University of Science and Technology, Kunming 650224, China
autor
  • Biotechnology Research Center, Kunming University of Science and Technology, Kunming 650224, China
autor
  • Biotechnology Research Center, Kunming University of Science and Technology, Kunming 650224, China
autor
  • College of Zoological Science and Technology, Southwest University, Chongqing 400716, China
autor
  • Biotechnology Research Center, Kunming University of Science and Technology, Kunming 650224, China
Bibliografia
  • Anoop VM, Basu U, McCammon MT, McAlister-Henn L, Taylor GJ (2003) Modulation of citrate metabolism alters aluminium tolerance in yeast and transgenic canola overexpressing a mitochondrial citrate synthase. Plant Physiol 132:2205–2217. doi:10.1104/pp.103.023903
  • Barone P, Rosellini D, Lafavette P, Bouton J, Veronesi F, Parrott W (2008) Bacterial citrate synthase expression and soil aluminum tolerance in transgenic alfalfa. Plant Cell Rep 27(5):893–901. doi:10.1007/s00299-008-0517-x
  • Basu U, Good A, Taylor GJ (2001) Trangenic Brassica napus plants overexpressing aluminium-induced mitochondrial manganese superoxide dismutase cDNA are resistant to aluminium. Plant Cell Environ 24:1269–1278. doi:10.1046/j.0016-8025.2001.00783.x
  • Chen LS (2006) Physiological responses and tolerance of plant shoot to aluminum toxicity. J Plant Physiol Mol Biol 2006(32):143–155
  • Chen LS, Qi YP, Smith BR, Liu XH (2005) Aluminium-induced decrease in CO₂ assimilation in citrus seedlings is unaccompanied by decreased activities of key enzymes involved in CO₂ assimilation. Tree Physiol 25:317–324. doi:10.1093/treephys/25.3.317
  • Cuevas IC, Posdesta FE (2000) Purification and physical and kinetic characterization of an NAD+-dependent malate dehydrogenase from leaves of pineapple (Ananas comosus). Physiol Plant 108:240–248. doi:10.1016/S0981-9428(02)00015-3
  • De la Fuente JM, Ramirez-Rodriguez V, Cabrera-Pone JL, Herrera-Estrella L (1997) Aluminium tolerance in transgenic plants by alteration of citrate synthesis. Science 276:1566–1568. doi: 10.1126/science.276.5318.1566
  • Delhaize E, Ryan PR (1995) Aluminium toxicity and tolerance in plants. Plant Physiol 107:315–321
  • Delhaize E, Ryan PR, Randall PJ (1993) Aluminium tolerance in wheat (Triticum aestivum L.) II. Aluminium-stimulated excretion of malic acid from root apices. Plant Physiol 103:695–702
  • Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasaki T, Matsumoto H (2004) Engineering high-level aluminium tolerance in barley with the ALMT1 gene. Proc Natl Acad Sci USA 101:15249–15254. doi:10.1073/pnas.0406258101
  • Devine TE, Bouton JH, Mabrahtu T (1990) Legume genetics and breeding for stress tolerance and nutrient efficiency. In: Baligar VC, Duncan RR (eds) Crops as enhancers of nutrient use. Academic Press, Boston, pp 211–252
  • Ding Y, Ma QH (2004) Characterization of a cytosolic malate dehydrogenase cDNA which encodes an isozyme toward oxaloacetate reduction in wheat. Biochemie 86:509–518. doi: 10.1016/j.biochi.2004.07.011
  • Ezaki B, Gardner RC, Ezaki Y, Matsumoto H (2000) Expression of aluminium-induced genes in transgenic Arabidopsis plants can ameliorate aluminium stress and/or oxidative stress. Plant Physiol 122:657–665
  • Gietl C (1992) Malate dehydrogenase isoenzymes: cellular locations and role in the flow of metabolites between the cytoplasm and cell organelles. Biochem Biophys Acta 1100:217–234
  • Graham CJ (2001) The influence of nitrogen source and aluminium on growth and elemental composition of Nemaguard peach seedlings. J Plant Nutr 24:423–439. doi:10.1081/PLN-100104970
  • Horsch RB, Hoffman NL (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231. doi: 10.1126/science.227.4691.1229
  • Howeler RH (1991) Identifying plants adaptable to low pH conditions. In: Wright RJ, Baligar VC, Murrmann RP (eds) Plant–soil interactions at low pH. Kluwer, Dordrecht, pp 885–904
  • Karimi M, Inze D, Depicker A (2002) Gateway vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7(5): 193–195
  • Kim DJ, Smith SM (1994) Expression of a single gene encoding microbody NAD-malate dehydrogenase during glyoxysome and peroxisome development in cucumber. Plant Mol Biol 26:1833–1841. doi:10.1007/BF00019496
  • Kochian LV, Hoekenga OA, Pineros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminium tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493. doi: 10.1146/annurev.arplant.55.031903.141655
  • Koyama H, Kawamura A, Kihara T, Takita E, Shibata D (2000) Overexpression of mitochondrial citrate synthase in Arabidopsis thaliana improved growth on a phosphorus limited soil. Plant Cell Physiol 41:1030–1037
  • Liu J, Magalhases JV, Shaff J, Kochian LV (2009) Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. Plant J 57:389–399. doi:10.1111/j.1365-313X.2008.03696.x
  • Lopez-Bucio J, de la Vega OM, Guevara-Garcia A, Herrera-Estrella L (2000) Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate. Nat Biotechnol 18:450–453. doi: 10.1038/74531
  • Ma JF (2000) Role of organic acids in detoxification of aluminum in higher plants. Plant Cell Physiol 41:383–390
  • Ma JF, Furukawa J (2003) Recent progress in the research of external Al detoxification in higher plants: a minireview. J Inorg Biochem 97:46–51. doi:10.1016/S0162-0134(03)00245-9
  • Ma JF, Hiradate S (2000) Form of aluminum for uptake and translocation in buckwheat (Fagopyrum esculentum Moench). Planta 211:355–360. doi:10.1007/s004250000292
  • Ma JF, Hiradate S, Nomoto K, Iwashita T, Matsumoto H (1997) Internal detoxification mechanism in hydrangea. Identification of the Al form in leaves. Plant Physiol 113:1033–1039
  • Ma JF, Hiradate S, Matsumoto H (1998) High aluminum resistance in buckwheat. II. Oxalic acid detoxifies aluminum internally. Plant Physiol 117:753–759
  • Ma JF, Ryan PR, Delhaize E (2001) Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:1360–1385. doi:10.1016/S1360-1385(01)01961-6
  • Miller SS, Driscoll BT, Gregerson RG, Gnatt JS, Vance CP (1998) Alfalfa malate dehydrogenase (MDH): molecular cloning and characterization of the five different forms reveals a unique nodule-enhanced MDH. Plant J 15:173–184. doi:10.1046/j.1365-313X.1998.00192.x
  • Murphey WH, Barnaby F, Lin J, Kaplan NO (1967) Malate dehydrogenase. II. Purification and properties of Bacillus subtilis, Baccillus stearothermophilus, and Escherichia coli malate dehydrogenases. J Biol Chem 242:1548–1559
  • Murphy J, Riley JP (1962) A modified single method for the determination of phosphate in natural waters. Anal Chem Acta 27:31–36. doi:10.1016/S0003-2670(00)88444-5
  • Murray MG, Thompson WG (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325
  • Parrot WA, Bouton JH (1990) Aluminum tolerance in alfalfa as expressed in tissue culture. Crop Sci 30:387–389
  • Pellet DM, Papernik LA, Kochian LV (1996) Multiple aluminum-resistance mechanisms in wheat: roles of root apical phosphate and malate exudation. Plant Physiol 112:591–595
  • Pereira WE, de Siqueira DL, Martinez CA, Puiatti M (2002) Gas exchange and chlorophyll fluorescence in four citrus rootstocks under aluminium stress. J Plant Physiol 157:513–520
  • Pierluigi B, Daniele R, Peter L, Joseph B, Fabio V, Wayne P (2008) Bacterial citrate synthase expression and soil aluminium tolerance in transgenic alfalfa. Plant Cell Rep 27:893–901. doi: 10.1007/s00299-008-0517-x
  • Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:527–560. doi:10.1146/annurev.arplant.52.1.527
  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory press, New York
  • Scheibe R (1987) NADP+-malate dehydrogenase in C3-plants: regulation and role of a light-activated enzyme. Physiol Plant 71:393–400. doi:10.1111/j.1399-3054.1987.tb04362.x
  • Sivaguru M, Ezaki B, He ZH, Tong HY, Osawa H, Baluske F, Volkmann D, Matsumoto H (2003) Aluminium-induced gene expression and protein localization of a cell wall-associated receptor kinase in Arabidopsis. Plant Physiol 132:2256–2266. doi:10.1104/pp.103.022129
  • Sugita M, Gruissem W (1987) Developmental, organ-specific, and light-dependent expression of the tomato ribulose-1,5-bisphosphate carboxylase small subunit gene family. Proc Natl Acad Sci USA 84:7104–7108
  • Sutherland P, McAlister-Henn L (1985) Isolation and expression of the Escherichia coli gene encoding malate dehydrogenase. J Bacteriol 163:1074–1079
  • Tesfaye M, Temple SJ, Allan DL, Vance CP, Samac DA (2001) Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminium. Plant Physiol 127:1836–1844
  • Tripodi KEJ, Podesta EF (2003) Purification and characterization of an NAD-dependent malate dehydrogenase from leaves of the Crassulacean acid metabolism plant Aptenia cordifolia. Plant Physiol Biochem 41:97–105. doi:10.1016/S0981-9428(02)00015-3
  • Vitorello VA, Capaldi FR, Stefanuto VA (2005) Recent advances in aluminium toxicity and resistance in higher plants. Braz J Plant Physiol 17(1):129–143. doi:10.1590/S1677-04202005000100011
  • Wang QF, Zhao Y, Hu QQ, Li KZ, Yu YX, Chen LM (2009) A study on aluminum resistance mechanisms of transgenic tobacco overexpressing citrate synthase and malate dehydrogenase. In: Proceedings of 7th international symposium on plant–soil interactions at low pH. GuangZhou, pp 118–119
  • You K, Kaplan N (1975) Purification and properties of malate dehydrogenase from Pseudomona testosterone. J Bacteriol 123:704–716
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-c0cb9932-409f-421a-885b-1f322879b8c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.