Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 24 | 1 |
Tytuł artykułu

Postprandial oxidative losses of dietary leucine depend on the time interval between consecutive meals: a model study with rats

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Postprandial oxidative losses of egg white-bound [1-13C]-leucine were studied as 13C recovery in the breath of rats in relation to different time intervals between two meals. Male Wistar rats (n = 48; 68.3 ± 5.9 g) divided into 4 groups (n = 12) were fed two meals a day (9:00 and 16:30; interval 7 h) of a 13.2% egg white-based diet for 30 min. After 14 days, 3 out of the 4 groups received the 2nd meal at shorter time intervals of 3, 1, and 0 h. Two [13CO2 ] breath tests (BT) were performed on days 19 and 40. The breath samples were analyzed for 13C Atom % (At %) enrichment by IRMS, and the results were expressed as the rate of 13C At % excess and cumulative recovery (% of dose). The 7 h interval group showed higher 13C cumulative recovery after the 2nd meal during both the BT and after the 1st meal on the day 40 BT compared with the 3, 1, and 0 h intervals. In groups with the 3, 1, and 0 h intervals, the cumulative recovery of 13C after the 2nd meal was lower compared with the 1st meal due to interaction between meals, which probably caused dilution of the tracer in the larger volume of feed in the rat’s stomach. On day 40, all cumulative recovery values were higher than on day 19. An important finding of this study is that despite the differences in postprandial Leu oxidation among interval groups, the weight gain of all rats was similar.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
24
Numer
1
Opis fizyczny
p.71-79,fig.,ref.
Twórcy
  • Department of Dietetics, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland
  • Wageningen Institute of Animal Sciences (WIAS), Human and Animal Physiology Group, Wageningen University, Haarweg 10, NL-6709 PJ, Wageningen, the Netherlands
autor
  • Department of Dietetics, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland
autor
  • Department of Dietetics, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland
  • Department of Dietetics, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland
  • Wageningen Institute of Animal Sciences (WIAS), Human and Animal Physiology Group, Wageningen University, Haarweg 10, NL-6709 PJ, Wageningen, the Netherlands
  • Wageningen Institute of Animal Sciences (WIAS), Human and Animal Physiology Group, Wageningen University, Haarweg 10, NL-6709 PJ, Wageningen, the Netherlands
Bibliografia
  • Boirie Y., Dangin M., Gachon P., Vasson M.P., Maubois J.L., Beuufrere B., 1997. Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc. Natl. Acad. Sci. USA 94, 14930–14935
  • Borne van den J.J., Verstegen M.W., Alferink S.J., Giebels R.M., Gerrits W.J., 2006. Effects of feeding frequency and feeding level on nutrient utilization in heavy preruminant calves. J. Dairy Sci. 89, 3578–3586
  • Bos C., Metges C.C., Gaudichon C., Petzke K.J., Pueyo M.E., Morens C., Everwand J., Benamouzig R., Tome D., 2003. Postprandial kinetics of dietary amino acids are the main determinant of their metabolism after soy or milk protein ingestion in humans. J. Nutr. 133, 1308–1315
  • Bujko J., Myszkowska-Ryciak J., Karwowska W., Koopmanschap R.E., Kuyf B., Zierikzee A., Schreurs V.V.A.M., 2004. The influence of feeding frequency and protein source on protein status and immune response. Polish J. Food Nutr. Sci. 13/54, 15–18
  • Bujko J., Schreurs V.V.A.M., Koopmanschap R.E., Furstenberg E., Keller J.S., 1997. Benefit of more but smaller meals at a fixed daily protein intake. Z. Ernährungswiss. 36, 347–349
  • Bujko J., Schreurs V.V.A.M., Nolles J.A., Verreijen A.M., Koopmanschap R.E., Verstegen M.W., 2007. Application of a [13CO2] breath test to study short-term amino acid catabolism during the postprandial phase of a meal. Brit. J. Nutr. 97, 891–897
  • Dangin M., Boirie Y., Garcia-Rodenas C., Gachon P., Fauquant J., Callier P., Ballèvre O., Beaufrère B., 2001. The digestion rate of protein is an independent regulating factor of postprandial protein retention. Amer. J. Physiol.- Endoc. M. 280, E340–E348
  • D’Mello J.P.F., 2003. Adverse effects of amino acids. In: J.P.F. D’Mello (Editor). Amino Acids in Animal Nutrition. CAB International. Wallingford, Oxon (UK), pp. 125–142
  • El-Khoury A.E., Sanchez M., Fukagawa N.K., Gleason R.E., Tsay R.H., Young V.R., 1995. The 24-h kinetics of leucine oxidation in healthy adults receiving a generous leucine intake via three discrete meals. Amer. J. Clin. Nutr. 62, 579–590
  • Evenepoel P., Hiele M., Luypaerts A., Geypens B., Buyse J., Decuypere E., Rutgeerts P., Ghoos Y., 1997. Production of egg proteins, enriched with L-leucine-13C, for the study of protein assimilation in humans using breath test technique. J. Nutr. 127, 327–331
  • Ganzon-Naret E.S., 2013. Effects of feeding frequency on growth, survival rate and body composition in sea bass (Lates calcarifer) juveniles fed a commercial diet under laboratory condition. ABAH Bioflux 5 (2), 175–182
  • Geboes K.P., Bammens B., Luypaerts A., Malheiros R., Buyse J., Evenepoel P., Rutgeerts P., Verbeke K., 2004. Validation of a new test meal for a protein digestion breath test in humans. J. Nutr. 134, 806–810
  • Ghoos Y., Beaufrere B., Dangin M., Boirie Y., Fauquant J., Evenepoel P., Geypens B., Hiele M., Rutgeerts P., 1998. The production of milk and egg proteins, enriched with stable isotopes, for the in vivo study of protein assimilation and metabolism during feeding: an European collaborative study. Gut 43, Suppl., 23–24
  • Heatley R.V., 1995. The Immune System and Nutrition Support. In: J. Payne-James, G. Grimble, D. Silk (Editors). Artificial Nutrition Support in Clinical Practice. The Bath Press, Avon pp. 99–113
  • Klein P.D., 2001. 13C Breath test: visions and realities. J. Nutr. 131, 1637S–1642S
  • Metges C.C., El-Khoury A.E., Selvaraj A.B., Tsay R.H., Atkinson A., Regan M.M., Bequette B.J., Young V.R., 2000. Kinetics of L-[1-13C] leucine when ingested with free amino acids, unlabeled or intrinsically labelled casein. Amer. J. Physiol. 287, E1000–E1009
  • Millward D.J., 1995. A protein-stat mechanism for regulation of growth and maintenance of the lean body mass. Nutr. Res. Rev. 8, 93–120
  • Morens C., Gaudichon C., Metges C.C., Fromentin G., Baglieri A., Even P.C., Huneau J.F., Tomé D., 2000. A high-protein meal exceeds anabolic and catabolic capacities in rats adapted to a normal protein diet. J. Nutr. 130, 2312–2321
  • Myszkowska-Ryciak J., Keller J., Bujko J., 2006. The influence of feeding frequency on dietary protein utilization - a model study. New Medicine 2, 43–47
  • Newby D.F., Price S.R., 1998. Determinants of protein turnover in health and disease. Miner. Electrolyte Metab. 24, 6–12
  • Nolles J.A., Verreijen A.M., Koopmanschap R.E., Verstegen M.W., Schreurs V.V., 2009. Postprandial oxidative losses of free and protein-bound amino acids in the diet: interactions and adaptation. J. Anim. Physiol. Anim. Nutr. (Berl) 93, 431–438
  • NRC, 1995. Nutrient Requirements of Laboratory Animals, 4th Revised Edition. The National Academies Press. Washington, DC
  • Ohkawara K., Cornier M.A., Kohrt W.M., Melanson E.L., 2013. Effects of increased meal frequency on fat oxidation and perceived hunger. Obesity 21(2), 336–343
  • Raguso C.A., Pereira P., Young V.R., 1999. A tracer investigation of obligatory oxidative amino acid losses in healthy, young adults. Amer. J. Clin. Nutr. 70, 474–483
  • Schiffelers S.L.H., Schreurs V.V.A.M., Krawielitzki K., Koopmanschap R.E., 1996. Effect of meal size on protein metabolism and utilization of dietary amino acids at a marginal level of protein intake. In: A.F. Nunes, A.V. Portugal, J.P.Costa, J.R. Ribero (Editors). Protein Metabolism and Nutrition. Proceedings of the 7th International Symposium on Protein Metabolism and
  • Nutrition. Vale de Santarém (Portugal). EAAP Publication No. 81, 345–347
  • Schreurs V.V.A.M., Koopmanschap R.E., Boekholt H.A., 1997. Shortterm dynamics in protein and amino acids metabolism. Z. Ernährungswiss 36, 336–339
  • Schreurs V.V.A.M., Krawielitzki K., 2003. Mathematical analysis of [ 13CO2] – expiration curves from human breath test using [1-13C] – amino acids as oral substrate. In: W.B. Souffrant and C.C. Metges (Editors). Progress in Research on Energy and Protein Metabolism. Rostock-Wernemunde (Germany). Wageningen Academic Press Publishers. EAAP Publication No. 109, pp. 239–242,
  • Shi G., Leray V., Scarpignato C., Bentouimou N., Bruley des Varannes S., Cherbut C., Galmiche J.P., 1997. Specific adaptation of gastric emptying to diets with differing protein content in the rats: is endogenous cholecystokinin implicated? Gut 41, 612–618
  • Türker A., Yildirim Ö., 2011. The effect of feeding frequency on growth performance and body composition in juvenile rainbow trout (Oncorhynchus mykiss) reared in cold seawater. Afr. J. Biotechnol. 10, 9479–9484
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-bfed7408-4867-46f1-9ee4-c7243f2269bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.