Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 3 |
Tytuł artykułu

Evaluating the replacement of galvanic Cr coatings

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Our paper deals with the possibility of replacing galvanic chrome coatings with thermal spraying, specifically with the high-velocity oxy-fuel coating spraying (HVOF) method. The article provides an analysis of alternatives compensation, mutual comparison of thermal spraying methods, and the choice of the most appropriate method for replacing galvanic chrome plating. Increased pressure on health and the environment necessitates the replacement of conventional galvanic plating process solution with hexavalent chromium Cr6+ by using environmentally friendly technology.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
27
Numer
3
Opis fizyczny
p.1289-1296,fig.,ref.
Twórcy
autor
  • Institute of Management, Industrial and Digital Engineering, Faculty of Mechanical Engineering, Technical University of Kosice, Park Komenskeho 9, 042 00 Kosice, Slovak Republic
autor
  • Department of Mechanical Technologies and Materials, Faculty of Mechanical Engineering, Technical University of Kosice, Masiarska 74, 040 01 Kosice, Slovak Republic
  • Institute of Management, Industrial and Digital Engineering, Faculty of Mechanical Engineering, Technical University of Kosice, Park Komenskeho 9, 042 00 Kosice, Slovak Republic
autor
  • Institute of Management, Industrial and Digital Engineering, Faculty of Mechanical Engineering, Technical University of Kosice, Park Komenskeho 9, 042 00 Kosice, Slovak Republic
autor
  • Institute of Management, Industrial and Digital Engineering, Faculty of Mechanical Engineering, Technical University of Kosice, Park Komenskeho 9, 042 00 Kosice, Slovak Republic
autor
  • Faculty of Industrial Technologies, Alexander Dubcek University of Trencin, I. Krasku 491/30, 020 01 Puchov, Slovak Republic
autor
  • Nuclear and Decommissioning Company, Bratislava, Slovakia
Bibliografia
  • 1. Zeng Z., Zhang J. Anti-wear properties of Cr–C and Ni–Co alloy coatings as substitutes for conventional nanocrystalline Cr coatings, Journal of Physics D: Applied Physics 41, 2008.
  • 2. Zeng Z., Wang L., Chen L., Zhang J. The correlation between the hardness and tribological behaviour of electroplated chromium coatings sliding against ceramic and steel counterparts, Surface and Coatings Technology 201 (17-18), 2006.
  • 3. Zeng Z., Wang L., Liang A., Zhang J. Tribological and electrochemical behavior of thick Cr–C alloy coatings electrodeposited in trivalent chromium bath as an alternative to conventional Cr coatings, Electrochimica Acta 52, 2006.
  • 4. Wang L., Gao Y., Xue Q., Liu H., Xu T.A. novel electrodeposited Ni–P gradient deposit for replacement of conventional hard chromium, Surface and Coatings Technology 200, 2006.
  • 5. Huang C.A., Lin W., Liao M.J. The electrochemical behaviour of the bright chromium deposits plated with direct- and pulse-current in 1 M H2SO4, Corrosion Science 48, 2006.
  • 6. SANIUK S., SANIUK A. Rapid prototyping of constraintbased production flows in outsourcing. Advanced Materials Research. 44-46 (1), 355, 2008.
  • 7. BREZINOVÁ J., VIŇÁŠ J., GUZANOVÁ A. Hodnotenie kvality keramických povlakov v podmienkach tribologického a cyklického tepelného zaťaženia, Chemical letters - Chemické listy, 105 (16), 574, 2011.
  • 8. Srivastava M., Ezhil Selvi V., William Grips V.K., Rajam K.S. Corrosion resistance and microstructure of electrodeposited nickel–cobalt alloy coatings, Surface Coatings and Technology 201 (3051-3060), 2006.
  • 9. Srivastava M., Anandan C., William Grips V.K. Ni–Mo–Co ternary alloy as a replacement for hard chrome, Applied Surface Science 285 (Part B), 167, 2013.
  • 10. Prioteasa P., Anicai L., Visan T. Synthesis and corrosion characterization of electrodeposited Ni–Mo alloys obtained from aqueous solutions, U.P.B. Scientific Bulletin, Series B: Chemistry and Materials Science 72, 11, 2010.
  • 11. Legg K. Replacing hard Cr and Cd - choosing the best options, [online] [cit. 19-02-2007]: www.rowantechnology. com, 2007.
  • 12. Kousaka H., Mori K., Umehara N., Tamura N., Shindo T. Internal DLC coating of narrow metal tubes using high-density near plasma sustained by microwaves propagating along plasma-sheath interfaces, Surface and Coating Technology 229, 65, 2013.
  • 13. Legg K., Sartwell B. Plasma spray of internal diameters, SERDP Project 1151, [online], [cit-11-03-2009]: http://www.rowantechnology.com/Documents/Plasma%20Spray/NDCEE%20Cr%20Cd%20Ni%20SERDP%20ID.pdf, 2009.
  • 14. Zeng F., Liang R., Li X.W., Wen S.P., Gao Y., Gu Y.L., Pan F. Surface anisotropy of CrxN1-x films prepared on an inner wall by magnetic sputtering, Applied Surface Science 253, 7563, 2007.
  • 15. Yin K.M., Wang C.M. A study on the deposit uniformity of hard chromium plating on the interior of small-diameter tubes, Surface and Coating Technology 114, 213, 1999.
  • 16. MARTINKOVIČ M., KOTTFER D., FERDINANDY M., MAŇKOVÁ I. The characterization of electroplated Cr coating, Mater. Sci. Technol. (internet magazine), 2, 31, 2011.
  • 17. Sør-Trøndelag . University College, Faculty of Technology [cit-21-03-2017]: <http://histproject.no/sites/histproject.no/files/2_18_Ochranné_vrstvy.pdf>.
  • 18. DANILOV F.I., PROTSENKO V.S., GORDIIENKO V.O., KWON S.C., LEE J.Y., M. KIM M. Nanocrystalline hard chromium electrodeposition from trivalent chromium bath containing carbamide and formic acid: Structure, composition, electrochemical corrosion behavior, hardness and wear characteristics of deposits, Appl. Surf. Sci., 257, 8048, 2011.
  • 19. MALINDZAKOVA M., STRĄKA M., ROSOVA A., KANUCHOVA M., TREBUNA P. Modeling the process for incineration of municipal waste, Przemysl Chemiczny, 94 (8), 2015.
  • 20. Kraus V. Povrchy a jejich úpravy [cit-21-03-2017]: <http://tzs.kmm.zcu.cz/POUcelk.pdf>.
  • 21. Dąbrowska J., Bawiec A., Pawęska K., Kamińska J., Stodolak J. Assessing the Impact of Wastewater Effluent Diversion on Water Quality, 1-12 [cit-20-03-2017]: http://www.pjoes.com/pdf/9.1/45-56.pdf, 26 (1), 2017.
  • 22. KŁOS S., PATALAS-MALISZEWSKA J. Throughput analysis of automatic production lines based on simulation methods, 93-75, 2015.
  • 23. Beltowska-Lehman E., Indyka P. Kinetics of Ni–Mo electrodeposition from Ni rich citrate baths, Thin Solid Films 520, 2046, 2012.
  • 24. Aaboubi O. Hydrogen evolution activity of Ni–Mo coating electrodeposited under magnetic field control, International Journal of Hydrogen Energy 36, 4702, 2011.
  • 25. WESTON D.P., SHIPWAY P.H., HARRIS S.J., CHENG M.K. Friction and sliding wear behaviour of electrodeposited cobalt and cobalt–tungsten alloy coatings for replacement of electrodeposited chromium, Wear, 267, 934, 2009.
  • 26. DE LIMA-NETO P., CORREIA A.N., VAZ G.L., CASCIANO P.N.S. Morphological, structural, microhardness and corrosion characterisations of electrodeposited Ni–Mo and Cr coatings. J. Braz. Chem. Soc., 21, 1968, 2010.
  • 27. LENORT R., BESTA P. Logistics of scrapped electronics equipment disassembly, Acta Montanistica Slovaca, 4 (3), 268, 2009.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-bec4c69c-7a24-42fc-8c7a-e6d05ff9c9ae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.