Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
Dendrimers containing viologen (derivatives of 4,4′-bipyridyl) units in their structure have been demonstrated to exhibit antiviral activity against human immunodeficiency virus (HIV-1). It has also recently been revealed that novel dendrimers with both viologen units and phosphorus groups in their structure show different antimicrobial, cytotoxic and hemotoxic properties, and have the ability to influence the activity of cholinesterases and to inhibit α-synuclein fibrillation. Since the influence of viologen-phosphorus structures on basic cellular processes had not been investigated, we examined the impact of such macromolecules on the murine neuroblastoma cell line (N2a). We selected three water-soluble viologen-phosphorus (VPD) dendrimers, which differ in their core structure, number of viologen units and number and type of surface groups, and analyzed several aspects of the cellular response. These included cell viability, generation of reactive oxygen species (ROS), alterations in mitochondrial activity, morphological modifications, and the induction of apoptosis and necrosis. The MTT assay results suggest that all of the tested dendrimers are only slightly cytotoxic. Although some changes in ROS formation and mitochondrial function were detected, the three compounds did not induce apoptosis or necrosis. In light of these results, we can assume that the tested VPD are relatively safe for mouse neuroblastoma cells. Although more research on their safety is needed, VPD seem to be promising nanoparticles for further biomedical investigation.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.459-478,fig.,ref.
Twórcy
autor
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
autor
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
autor
- Laboratorie de Chimie de Coordination CNRS, 205 Route de Narbonne, 31077 Toulouse, France
autor
- Institute of Nanomaterials and Nanotechnology and Moroccan Foundation for Advanced Science, Innovation and Research (INANOTECH-MAScIR) ENSET, Avenue de l'Arme'e Royale, Madianat El Irfane, 10100 Rabat, Marocco
autor
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
autor
- Laboratorie de Chimie de Coordination CNRS, 205 Route de Narbonne, 31077 Toulouse, France
autor
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
Bibliografia
- 1.Klajnert, B. and Bryszewska, M. Dendrimers: properties and applications. Acta Biochim. Pol. 48 (2001) 199-208.
- 2. Svenson, S. and Tomalia, D.A. Dendrimers in biomedical applicationsreflections on the field. Adv. Drug Deliv. Rev. 57 (2005) 2106-2129.
- 3. Menjoge, A.R., Kannan, R.M. and Tomalia, D.A. Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug. Discov. Today 15 (2010) 171-185.
- 4. Wang, B., Navath, R.S., Menjoge, A.R., Balakrishnan, B., Bellair, R., Dai, H., Romero, R., Kannan, S. and Kannan, R.M. Inhibition of bacterial growth and intramniotic infection in a guinea pig model of chorioamnionitis using PAMAM dendrimers. Int. J. Pharm. 395 (2010) 298-308.
- 5. Luganini, A., Nicoletto, S.F., Pizzuto, L., Pirri, G., Giuliani, A., Landolfo, S. and Gribaudo, G. Inhibition of herpes simplex virus type 1 and type 2 infections by peptide-derivatized dendrimers. Antimicrob. Agents Chemother. 55 (2011) 3231-3239.
- 6. Janiszewska, J., Sowińska, M., Rajnisz, A., Solecka, J., Łacka, I., Milewski, S. and Urbańczyk-Lipkowska, Z. Novel dendrimeric lipopeptides with antifungal activity. Bioorgan. Med. Chem. Lett. 22 (2012) 1388-1393.
- 7. Ottaviani, M.F., Mazzeo, R., Cangiotti, M., Fiorani, L., Majoral, J.-P., Caminade, A.-M., Pedziwiatr, E., Bryszewska, M. and Klajnert, B. Time evolution of the aggregation process of peptides involved in neurodegenerative diseases and preventing aggregation effect of phosphorus dendrimers studied by EPR. Biomacromolecules 11 (2010) 3014-3021.
- 8. Milowska, K., Gabryelak, T., Bryszewska, M., Caminade, A.-M. and Majoral, J.-P. Phosphorus-containing dendrimers against α-synuclein fibril formation. Int. J. Biol. Macromol. 50 (2012) 1138-1143.
- 9. Wasiak, T., Ionov, M., Nieznanski, K., Nieznanska, H., Klementieva, O., Granell, M., Cladera, J., Majoral, J.-P., Caminade, A.-M. and Klajnert, B. Phosphorus dendrimers affect Alzheimer’s (Aβ1-28) peptide and MAP-Tau protein aggregation. Mol. Pharm. 9 (2012) 458-469.
- 10. Albertazzi, L., Gherardini, L., Brondi, M., Sulis Sato, S., Bifone, A., Pizzorusso, T., Ratto, G.M. and Bardi, G. In vivo distribution and toxicity of PAMAM dendrimers in the central nervous system depend on their surface chemistry. Mol. Pharm. 10 (2013) 249-260.
- 11. Dai, H., Navath, R.S., Balakrishnan, B., Guru, B.R., Mishra, M.K., Romero, R., Kannan, R.M. and Kannan, S. Intrinsic targeting of inflammatory cells in the brain by polyamidoamine dendrimers upon subarachnoid administration. Nanomedicine 5 (2010) 317-1329.
- 12. Kannan, S., Dai, H., Navath, R.S., Balakrishnan, B., Jyoti, A., Janisse, J., Romero, R. and Kannan, R.M. Dendrimer-based postnatal therapy for neuroinflammation and cerebral palsy in a rabbit model. Sci .Transl. Med. 4 (2012) 130ra46.
- 13. Iezzi, R., Guru, B.R., Glybina, I.V., Mishra, M.K., Kennedy, A. and Kannan, R.M. Dendrimer-based targeted intravitreal therapy for sustained attenuation of neuroinflammation in retinal degeneration. Biomaterials 33 (2012) 979-988.
- 14. Launay, N., Caminade, A. and Lahana, R. A general synthetic strategy for neutral phosphorus-containing dendrimers. Angew. Chem. Int. Ed. Engl. 33 (1994) 1589-1592.
- 15. Galliot, C. Regioselective stepwise growth of dendrimer units in the internal voids of a main dendrimer. Science 277 (1997) 1981-1984.
- 16. Merino, S., Brauge, L., Caminade, A.M., Majoral, J.P., Taton, D. and Gnanou, Y. Synthesis and characterization of linear, hyperbranched, and dendrimer-like polymers constituted of the same repeating unit. Chemistry 7 (2001) 3095-3105.
- 17. Caminade, A.-M., Turrin, C.-O. and Majoral, J.-P. Biological properties of phosphorus dendrimers. New J. Chem. 34 (2010) 1512-1524.
- 18. Babbs, C.F., Pham, J.A. and Coolbaugh, R.C. Lethal hydroxyl radical production in paraquat-treated plants. Plant Physiol. 90 (1989) 1267-1270.
- 19. Huang, C., Zhang, X., Jiang, Y., Li, G., Wang, H., Tang, X. and Wang, Q. Paraquat- induced convulsion and death: a report of five cases. Toxicol. Ind. Health (2012) DOI: 10.1177/0748233712442712.
- 20. Spivey, A. Rotenone and paraquat linked to Parkinson’s disease: human exposure study supports years of animal studies. Environ. Health Perspect. 119 (2011) A259.
- 21. Freire, C. and Koifman, S. Pesticide exposure and Parkinson’s disease: Epidemiological evidence of association. Neurotoxicology 33 (2012) 947-971.
- 22. Gollamudi, S., Johri, A., Calingasan, N.Y., Yang, L., Elemento, O. and Beal, M.F. Concordant signaling pathways produced by pesticide exposure in mice correspond to pathways identified in human Parkinson’s disease. PLoS ONE 7 (2012) e36191.
- 23. Fukushima, T., Tanaka, K., Lim, H. and Moriyama, M. Mechanism of cytotoxicity of paraquat. Environ. Health Prev. Med. 7 (2002) 89-94.
- 24. Bielefeld, E.C., Hu, B.H., Harris, K.C. and Henderson, D. Damage and threshold shift resulting from cochlear exposure to paraquat-generated superoxide. Hear Res. 207 (2005) 35-42.
- 25. Asaftei, S. and De Clercq, E. “Viologen” dendrimers as antiviral agents: the effect of charge number and distance. J. Med. Chem. 53 (2010) 3480-3488.
- 26. Ciepluch, K., Katir, N., Kadib, El, A., Felczak, A., Zawadzka, K., Weber, M., Klajnert, B., Lisowska, K., Caminade, A.-M., Bousmina, M., Bryszewska, M. and Majoral, J.P. Biological properties of new viologen-phosphorus dendrimers. Mol. Pharm. 9 (2012) 448-457.
- 27. Ciepluch, K., Weber, M., Katir, N., Caminade, A.-M., Kadib, El, A., Klajnert, B., Majoral, J.-P. and Bryszewska, M. Effect of viologenphosphorus dendrimers on acetylcholinesterase and butyrylcholinesterase activities. Int. J. Biol. Macromol. 54 (2013) 119-124.
- 28. Milowska, K., Grochowina, J., Katir, N., Kadib, El, A., Majoral, J.-P., Bryszewska, M. and Gabryelak, T. Viologen-phosphorus dendrimers inhibit α-synuclein fibrillation. Mol. Pharm. 10 (2013) 1131-1137 .
- 29. Milowska, K., Grochowina, J., Katir, N., Kadib, El, A., Majoral, J.-P., Bryszewska, M. and Gabryelak, T. Interaction between viologen-phosphorus dendrimers and α-synuclein. J. Lumin. 134 (2013) 132-137.
- 30. Baker, J.R. Dendrimer-based nanoparticles for cancer therapy. Hematology Am. Soc. Hematol. Educ. Program (2009) 708-719.
- 31. Guo, R. and Shi, X. Dendrimers in cancer therapeutics and diagnosis. Curr. Drug Metab. 13 (2012) 1097-1109.
- 32. Bernas, T. and Dobrucki, J. Mitochondrial and nonmitochondrial reduction of MTT: interaction of MTT with TMRE, JC-1, and NAO mitochondrial fluorescent probes. Cytometry 47 (2002) 236-242.
- 33. Janaszewska, A., Ciolkowski, M., Wróbel, D., Petersen, J.F., Ficker, M., Christensen, J.B., Bryszewska, M. and Klajnert, B. Modified PAMAM dendrimer with 4-carbomethoxypyrrolidone surface groups reveals negligible toxicity against three rodent cell-lines. Nanomedicine (2013) DOI: 10.1016/j.nano.2013.01.010.
- 34. Bartosz, G. Use of spectroscopic probes for detection of reactive oxygen species. Clin. Chim. Acta 368 (2006) 53-76.
- 35. Agnello, M., Morici, G., and Rinaldi, A.M. A method for measuring mitochondrial mass and activity. Cytotechnology 56 (2008) 145-149.
- 36. Salvioli, S., Ardizzoni, A., Franceschi, C. and Cossarizza, A. JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess delta psi changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Lett. 411 (1997) 77-82.
- 37. Ribble, D., Goldstein, N.B., Norris, D.A. and Shellman, Y.G. A simple technique for quantifying apoptosis in 96-well plates. BMC Biotechnol. 5 (2005) DOI:10.1186/1472-6750-5-12.
- 38. Michałowicz, J. and Sicińska, P. Chlorophenols and chlorocatechols induce apoptosis in human lymphocytes (in vitro). Toxicol. Lett. 191 (2009) 246-252.
- 39. Patel, D., Henry, J. and Good, T. Attenuation of β-amyloid induced toxicity by sialic acid-conjugated dendrimeric polymers. Biochim. Biophys. Acta 1760 (2006) 1802-1809.
- 40. Kuo, J.-H.S., Jan, M.-S. and Lin, Y.-L. Interactions between U-937 human macrophages and poly(propyleneimine) dendrimers. J. Control Release 120 (2007) 51-59.
- 41. Naha, P.C., Davoren, M., Lyng, F.M. and Byrne, H.J. Reactive oxygen species (ROS) induced cytokine production and cytotoxicity of PAMAM dendrimers in J774A.1 cells. Toxicol. Appl. Pharmacol. 246 (2010) 91-99.
- 42. Wang, W., Xiong, W., Wan, J., Sun, X., Xu, H. and Yang, X. The decrease of PAMAM dendrimer-induced cytotoxicity by PEGylation via attenuation of oxidative stress. Nanotechnology 20 (2009) 105103.
- 43. Mukherjee, S.P., Lyng, F.M., Garcia, A., Davoren, M. and Byrne, H.J. Mechanistic studies of in vitro cytotoxicity of poly(amidoamine) dendrimers in mammalian cells. Toxicol. Appl. Pharmacol. 248 (2010) 259-268.
- 44. Mukherjee, S.P. and Byrne, H.J. Polyamidoamine dendrimer nanoparticle cytotoxicity, oxidative stress, caspase activation and inflammatory response: experimental observation and numerical simulation. Nanomedicine 9 (2012) 202-211.
- 45. Lee, J.-H., Cha, K.E., Kim, M.S., Hong, H.W., Chung, D.J., Ryu, G. and Myung, H. Nanosized polyamidoamine (PAMAM) dendrimer-induced apoptosis mediated by mitochondrial dysfunction. Toxicol. Lett. 190 (2009) 202-207.
- 46. Hong, S., Leroueil, P.R., Janus, E.K., Peters, J.L., Kober, M.-M., Islam, M.T., Orr, B.G., Baker, J.R. and Banaszak Holl, M.M. Interaction of polycationic polymers with supported lipid bilayers and cells: nanoscale hole formation and enhanced membranepermeability. Bioconjugate Chem. 17 (2006) 728-734.
- 47. Leroueil, P.R., Hong, S., Mecke, A., Baker, J.R., Orr, B.G. and Banaszak Holl, M.M. Nanoparticle interaction with biological membranes: does nanotechnology present a Janus face? Acc. Chem. Res. 40 (2007) 335-342.
- 48. Leroueil, P.R., Berry, S.A., Duthie, K., Han, G., Rotello, V.M., McNerny, D.Q., Baker, J.R., Orr, B.G. and Holl, M.M.B. Wide varieties of cationic nanoparticles induce defects in supported lipid bilayers. Nano. Lett. 8 (2008) 420-424.
- 49. Ionov, M., Wrobel, D., Gardikis, K., Hatziantoniou, S., Demetzos, C., Majoral, J-P., Klajnert, B. and Bryszewska, M. Effect of phosphorus dendrimers on DMPC lipid membranes. Chem. Phys. Lipids 165 (2012) 408-413.
- 50. Kitchens, K.M., Foraker, A.B., Kolhatkar, R.B., Swaan, P.W. and Ghandehari, H. Endocytosis and interaction of poly (amidoamine) dendrimers with Caco-2 cells. Pharm. Res. 24 (2007) 2138-2145.
- 51. Kitchens, K.M., Kolhatkar, R.B., Swaan, P.W. and Ghandehari, H. Endocytosis inhibitors prevent poly(amidoamine) dendrimer internalization and permeability across Caco-2 cells. Mol. Pharm. 5 (2008) 364-369.
- 52. Albertazzi, L., Serresi, M., Albanese, A. and Beltram, F. Dendrimer internalization and intracellular trafficking in living cells. Mol. Pharm. 7 (2010) 680-688.
- 53. Albertazzi, L., Fernandez-Villamarin, M., Riguera, R. and Fernandez-Megia, E. Peripheral functionalization of dendrimers regulates internalization and intracellular trafficking in living cells. Bioconjugate Chem. 23 (2012) 1059-1068.
- 54. Perumal, O.P., Inapagolla, R., Kannan, S. and Kannan, R.M. The effect of surface functionality on cellular trafficking of dendrimers. Biomaterials 29 (2008) 3469-3476.
- 55. Healy, E., Dempsey, M., Lally, C. and Ryan, M.P. Apoptosis and necrosis: mechanisms of cell death induced by cyclosporine A in a renal proximal tubular cell line. Kidney Int. 54 (1998) 1955-1966.
Uwagi
Rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-bd8c3597-f63e-46dd-b97f-e9c34551a8bc