Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 70 | 05 |
Tytuł artykułu

Wpływ rodzaju ekstraktu i poziomu inuliny na stężenie krótkołańcuchowych kwasów tłuszczowych w jelicie grubym oraz wskaźniki lipidowe krwi tuczników

Warianty tytułu
EN
Effect of inulin content and extract type on short-chain fatty acid concentration in large intestine and lipid parameters in fattener blood
Języki publikacji
PL
Abstrakty
EN
The research objective was to assess the influence of a dietary inulin supplement (the way of obtaining it and its level) on chosen lipid parameters in fattener blood plasma as well as on volatile fatty acid content in the cecum and colon. The experimental trial involved 140 growers, (PL × PLW) × Duroc crossbred pigs, with an initial body weight of 29.0 ± 0.5 kg, and assigning them into 7 diet groups. Group I was the control group; the others had diets supplemented with 1%, 2% and 3% inulin (water extract in group II-IV and water-alcohol extract in V-VII groups). Blood samples for examination were collected three times during the fattening period (at 40, 70 and 100 kg BW). Large bowel contents obtained at animal slaughter made it possible to determine the volatile fatty acid level and pH. The blood plasma was examined to establish the content of triacylglycerols, total cholesterol and high density lipoprotein fraction (HDL). Inclusion of the investigated prebiotic has affected the level of some volatile fatty acids in the bowel contents. The group with 3% water-alcohol inulin extract supplementation showed increased concentration of acetic, isobutyric and butyric acid (cecum) as well as acetic and butyric acid (colon). Throughout the whole fattening period, an increase was observed in (p ≤ 0.01) HDL cholesterol fraction in each diet group with inulin additive (II-VII), i.e. by 48, 49, 44, 47, 41 and 40%, respectively, as compared to the control (I). On the other hand a decrease (p ≤ 0.01) of triacylglycerols content was noted in group II and VII in comparison to the control group. All the fatteners fed mixtures containing inulin had a lower total cholesterol/HDL cholesterol ratio in comparison to the control group (p ≤ 0.01). The key findings of the study have shown that an increased inulin level positively affected the chosen lipid parameters in fattener blood plasma as well as the production of short-chain fatty acids in the large intestine. However, no substantial influence of an inulin extraction method on the studied parameters was noted.
Wydawca
-
Rocznik
Tom
70
Numer
05
Opis fizyczny
s.296-301,tab.,bibliogr.
Twórcy
  • Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
  • Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
autor
  • The Kielanowski Institute of Animal Physiology and Nutrition PAS, Instytucka 3, 05-110 Jablonna, Poland
autor
  • Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
Bibliografia
  • 1. Bach Knudsen K. E., Hansen J.: Gastrointestinal implications in pigs of wheat and oat fractions. 1. Digestibility and bulking properties of polysaccharides and other major constituents. Br. J. Nutr. 1991, 65, 217-232.
  • 2. Barszcz M., Taciak M., Tuśnio A., Święch E., Staśkiewicz Ł., Skomiał J.: Microbial activity in the large intestine of piglets fed diets with different sources of inulin. 4th EAAP Intern. Symposium on Energy and Protein Metabolism and Nutrition. EAAP Publ, Ed. Oltjen J. W., Kebreab E., Lapierre H. 2013, 134, 379-380.
  • 3. Causey J. L., Feirtag J. M., Gallaher D. D., Tungland B. C., Slavin J. L.: Effects of dietary inulin on serum lipids, blood glucose and the gastrointestinal environment in hypercholesterolemic men. Nutr. Res. 2000, 20, 191-201.
  • 4. Chen W. J., Anderson J., Jennings D.: Propionate may mediate the hypocholesterolemic effects of certain soluble plant fibers in cholesterol-fed rats. Proc. Sot. Exp. Biol. Med. 1984, 175, 215-218.
  • 5. Danielson A. D., Peo E. R., Shahani K. M., Lewis A. J., Whalen P. J.: Anticholesteremic property of Lactobacillus Acidophilus yogurt fed to mature boars. J. Anim. Sci. 1989, 67, 966-974.
  • 6. Davidson M. H., Maki K. C.: Effects of dietary inulin on serum lipids. J. Nutr. 1999, 129, 1474-1474.
  • 7. Delzenne N. M., Kok N. N.: Biochemical basis of oligofructose – induced hypolipidemia in animal models. J. Nutr. 1999, 129, 1467-1470.
  • 8. Delzenne N. M., Williams C. M.: Prebiotics and lipid metabolism. Curr. Opin. Lipidol. 2002, 13, 61-67.
  • 9. Friedewald W. T., Levy R. I., Fredrickson D. S.: Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499-502.
  • 10. Grela E. R., Pastuszak J., Bloch U.: Poradnik nowoczesnego żywienia świń. SRRiL „Progress”, Lublin 2009.
  • 11. Jin L. Z., Ho Y. W., Abdullah N., Jalaludin S.: Growth performance, intestinal microbial populations and serum cholesterol of broiler on diets containing Lactobacillus culture. Poultry Sci. 1998, 77, 1259-1265.
  • 12. Kim M., Shin H. K.: The water-soluble extract of chicory influences serum and liver lipid concentrations, cecal short-chain fatty acid concentrations and fecal lipid excretion in rats. J. Nutr. 1998, 128, 1731-1736.
  • 13. Laere A. van, Van den Ende W.: Inulin metabolism in dicots: chicory as a model system. Plant Cell Environ. 2002, 25, 803-813.
  • 14. Lambert J. M., Bongers R. S., de Vos W. M., Kleerebezem M.: Functional analysis of four bile salt hydrolase and penicillin acylase family members in Lactobacillus plantarum WCFS1. Appl. Environ. Microbiol. 2008, 74, 4719-4726.
  • 15. Liong M. T., Shah N. P.: Acid and bile tolerance and cholesterol removal ability of lactobacilli strains. J. Dairy Sci. 2005, 88, 55-66.
  • 16. Liong M. T., Shah N. P.: Effects of a Lactobacillus casei synbiotic on serum lipoprotein, intestinal microflora, and organic acids in rats. J. Dairy Sci. 2006, 89, 1390-1399.
  • 17. Loh G., Eberhard M., Brunner R. M., Hennig U., Kuhla S., Kleessen B., Metges C. C.: Inulin alters the intestinal microbiota and short-chain fatty acid concentrations in growing pigs regardless of their basal diet. J. Nutr. 2006, 136, 1198-1202.
  • 18. Lye H. S., Rusul G., Liong M. T.: Removal of cholesterol by Lactobacilli via incorporation of and conversion to coprostanol. J. Dairy Sci. 2010, 93, 1383-1392.
  • 19. May T., Mackie R. I., Fahey G. C. Jr, Cremin J. C., Garleb K. A.: Effect of fiber source on short-chain fatty acid production and on the growth and toxin production by Clostridium difficile. Scand. J. Gastroenterol. 1994, 29, 916-922.
  • 20. Montagne L., Pluske J. R., Hampson D. J.: A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young monogastric animals. Anim. Feed Sci. Technol. 2003, 108, 95-117.
  • 21. Nowak A., Klimowicz A., Bielecka-Grzela S., Piechota M.: Inulina – cenny składnik żywieniowy. Ann. Acad. Med. Stetin. 2012, 58, 62-65.
  • 22. Paßlack N., Al-Samman M., Vahjen W., MännerK., Zentek J.: Chain length of inulin affects its degradation and the micro biota in the gastrointestinal tract of weaned piglets after a short-term dietary application. Livest. Sci. 2012, 149, 128-136.
  • 23. Pereira D. I. A., Gibson G. R.: Cholesterol assimilation by lactic acid bacteria and bifidobacteria isolated from the human gut. Appl. Environ. Microbiol. 2002, 68, 4689-4693.
  • 24. Peu P., Béline F., Martinez J.: Volatile fatty acids analysis from pig slurry using high-performance liquid chromatograph. Inter. J. Environ. Anal. Chem. 2004, 84 13, 1017-1022.
  • 25. Preter V. de, Vanhoutte T., Huys G., Swings J., De Vuyst L., Rutgeerts P., Verbeke K.: Effects of Lactobacillus casei Shirota, Bifidobacterium breve, and oligofructose – enriched inulin on colonic nitrogen metabolism in healthy humans. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 292, 358-368.
  • 26. Roberfroid M. B.: Inulin-type fructans: functional food ingredients. J. Nutr. 2007, 137, 2493-2502.
  • 27. Roediger W. E. W., Moore A.: Effect of short chain fatty acid on sodium absorption in isolated human colon perfused through the vascular bed. Dig. Dis. Sci. 1981, 26, 100-106.
  • 28. Stahl E., Schild W.: Pharmazeutische Biologie, 4: Drogenanalyse II: Inhaltsstoffe und Isolierungen. Gustav Fischer, Stuttgart/New York 1981.
  • 29. Steinka I.: Wybrane aspekty stosowania probiotyków: Ann. Acad. Med. Gedan. 2011, 41, 97-108.
  • 30. Vanhoof K., de Schrijver R.: Effect of unprocessed and baked inulin on lipid metabolism in normo- and hypercholesterolemic rats. Nutr. Research. 1995, 15, 1637-1646.
  • 31. Walker D. K., Gilliland S. E.: Relationships among bile tolerance, bile salt deconjugation and assimilation of cholesterol by Lactobacillus acidophilus. J. Dairy Sci. 1993, 76, 956-961.
  • 32. Wenk C.: The role of dietary fibre in the digestive physiology of the pig. Anim. Feed Sci. Technol. 2001, 90, 21-33.
  • 33. Williams C.: Effect of inulin on lipid parameters in humans. J. Nutr. 1999, 129, 1471-1473.
  • 34. Ziarno M., Bartosz P.: Wiązanie cholesterolu przez bakterie jogurtowe w modelowym soku jelitowym. Żywność Nauka Technologia Jakość 2007, 4, 126-138.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-bb450dd9-297c-4ce3-acc6-42cfd8c65781
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.