Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 22 | 6 |
Tytuł artykułu

Effects of various long-term tillage systems on some chemical and biological properties of soil

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the directions of actions limiting the occurrence in soil environments of unfavorable phenomena accompanying conventional tillage is the introduction of reduced tillage, even total abandonment of cultivation operations. The objective of the performed investigation was to compare the impact of conventional tillage, reduced tillage, and no-tillage on some soil chemical (Corg., total N, pH) and microbiological (total bacterial counts, numbers of oligotrophs, copiotrophs and fungi, activity of dehydrogenases and acid phosphatase) properties. Studies carried out in 2010-12 involved a static field experiment initiated in 1999 at Brody Research Station of Poznań University of Life Science, Poland, in temperate climate, on a soil classified as Albic Luvisols developed on loamy sands overlying loamy material. Analyses were performed on soil samples collected from under winter wheat from two horizons: 0-10 cm and 10-20 cm. In the 0-10 cm layer, the lowest values of almost all analyzed indices (Corg., total N, total bacterial counts, numbers of oligotrophs, copiotrophs and fungi, as well as the activity of dehydrogenases and acid phosphatase) were determined in conditions of conventional tillage. In the 0-10 cm soil layer, in all years of study, the highest numbers of bacteria were found in conditions of reduced tillage and no-tillage. On the other hand, in the course of the remaining years of study, the most numerous bacterial counts in the 10-20 cm soil layer were determined in conditions of conventional tillage. More interesting conclusions were arrived at following the analysis of soil bacteria after splitting them into oligotrophic. Numbers of oligotrophs in individual experimental combinations were found to be distributed in a way similar to total bacteria counts.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
22
Numer
6
Opis fizyczny
p.1835-1844,fig.,ref.
Twórcy
  • Department of General and Environmental Microbiology, Poznan University of Life Sciences, Szydłowska 50, Poznan, Poland
autor
  • Department of Agronomy, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland
  • Department of Agronomy, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland
  • Department of Grassland and Natural Landscape Sciences, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland
autor
  • Department of General and Environmental Microbiology, Poznan University of Life Sciences, Szydłowska 50, Poznan, Poland
Bibliografia
  • 1. HOLLAND J.M. The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence. Agric. Ecosys. Environ. 103, 1, 2004.
  • 2. STAJNKO D., LAKOTA M., VUČAJNK F., BERNIK R. Effects of different tillage systems on fuel savings and reduction of CO2 emissions in production of silage corn in eastern slovenia. Pol. J. Environ. Stud. 18, (4), 711, 2009.
  • 3. SZAFRAŃSKI C., STACHOWSKI P., KOZACZYK P. Actual condition and forecast of improvement of water management in soil of post mining grounds. Rocz. Ochr. Środow. 13, 458, 2011 [In Polish].
  • 4. DORAN J.W., ELLIOTT E.T., PAUSTIAN K. Soil microbial activity, nitrogen cycling, and long-term changes in organic carbon pools as related to fallow tillage management. Soil Till. Res. 49, 3, 1998.
  • 5. KLADIVKO E.J. Tillage systems and soil ecology. Soil Till. Res. 61, 61, 2001.
  • 6. MAŁECKA I., BLECHARCZYK A., SAWIŃSKA Z., DOBRZENIECKI T. The effect of various long-term tillage systems on soil properties and spring barley yield. Turk. J. Agric. For. 36, 217, 2012.
  • 7. BLANCO-CANQUI H., LAL R., OWENS L.B., POST W.M., IZAURRALDE R.C. Strength properties and organic carbon of soil in the north Appalachian Region. Soil Sci. Soc. Am. J. 69, 663, 2005.
  • 8. DEMARIA I.C., NNABUDE P.C., CASTRO O.M. Longterm tillage and crop rotation effects on soil chemical properties of a Rhodic Ferralsol in southern Brazil. Soil Till. Res. 51, 71, 1999.
  • 9. AL-KAISI M.M., YIN X.H., LICHT M.A. Soil carbon and nitrogen changes as influenced by tillage and cropping systems in some Iowa soils. Agric. Ecosyst. Environ. 105, 635, 2005.
  • 10. MAŁECKA I., BLECHARCZYK A., DOBRZENIECKI T. The productivity and environmental consequences of longterm ploughless tillage systems in field pea. Fragm. Agron. 26, (3), 118, 2009 [In Polish].
  • 11. MELERO S., PANETTIERI M., MADEJÓN E., GÓMEZ MACPHERSON H., MORENO F., MURILLO J.M. Implementation of chiselling and mouldboard ploughing in soil after 8 years of no-till management in SW, Spain: Effect on soil quality. Soil Till. Res. 112, 107, 2011.
  • 12. RAHMAN M.H., OKUBO A., SUGIYAMA S., MAYLAND H.F. Physical, chemical and microbiological properties of an Andisol as related to land use and tillage practice. Soil Till. Res. 101, 10, 2008.
  • 13. MUÑOZ A., LÓPEZ-PIÑEIRO A., RAMÍREZ M. Soil quality attributes of conservation management regimes in a semi-arid region of south western Spain. Soil Till. Res. 95, 255, 2007.
  • 14. JANVIER C., VILLENEUVE F., ALABOUVETTE C., EDEL-HERMANN V., MATEILLE T., STEINBERG C. Soil health through soil disease suppression: Which strategy from descriptors to indicators? Soil Biol. Biochem. 39, 1, 2007.
  • 15. KALEMBASA S., SYMANOWICZ B. Enzymatic activity of soil after applying various waste organic materials, ash, and mineral fertilizers. Pol. J. Environ. Stud. 21, (6), 1635, 2012.
  • 16. MORENO J. L., HERN ANDEZ T., PÉREZ A., GARCIA C. Toxicity of cadmium to soil microbial activity: effect of sewage sludge addition to soil on the ecological dose. Appl. Soil Ecol. 21, (2), 149, 2002.
  • 17. WYSZKOWSKA J., KUCHARSKI J., LAJSZNER W. Enzymatic activities in different soils contaminated with copper. Pol. J. Environ. Stud. 14, (5), 659, 2005.
  • 18. BIELIŃSKA E.J., MOCEK-PŁÓCINIAK A. Impact of the tillage system on the soil enzymatic activity. Arch. Environ. Prot. 38, (1), 75, 2012.
  • 19. MADEJÓN E., MORENO F., MURILLO J.M., PELEGRÍN F. Soil biochemical response to long-term conservation tillage under semi-arid Mediterranean conditions. Soil Till. Res. 94, 346, 2007.
  • 20. GREEN V.S., STOTT D.E., CRUZ J.C., CURI N. Tillage impacts on soil biological activity and aggregation in a Brazilian Cerrado Oxisol. Soil Till. Res. 92, 114, 2007.
  • 21. MOCEK A., DRZYMAŁA S. Genesis, analysis and classification of soils. Ed. UP in Poznan pp. 418, 2010 [In Polish].
  • 22. EGNER H., RIEHM H., DOMINGO W.R. Studies concerning the chemical analysis of soil as background for soil nutrient assessment. II. Chemical extracting methods to determine the phosphorous and potassium content of soil. Kungliga Lantbrukshögskolans Annaler 26, 199, 1960 [In German]
  • 23. RODINA A. Microbiological methods for testing the walters. PWRiL, Warszawa, pp. 468, 1968 [In Polish].
  • 24. MERCK-POLSKA. 101621 Standard Count agar for microbiology, 1, 2004.
  • 25. HATTORI R., HATTORI T. Sensitivity to salts and organic coumpounds of soil bacteria isolated on diluted media. J. Gen. Appl. Microbiol. 26, 1, 1980.
  • 26. MARTIN J.P. Use of acid, rose bengal and streptomycin in the plate method for estimating soil fungi. Soil Sci. 69, 215, 1950.
  • 27. THALMANN A. Methodology for the determination of dehydrogenase activity in soil using triphenyltetrazolium (TTC). Landwirtsch. Forsch. 21, 249, 1968.
  • 28. TABATABEI M.A., BREMNER J. Use of p-nitrophenyl phosphate for assys of soil phosphatase activity. Soil Biol. Biochem., 1, 301, 1969.
  • 29. LEE S.H., OH B.I., KIM J. Effect of various amendments on heavy mineral oil bioremediation and soil microbial activity. Bioresour. Technol. 99, 2578, 2008.
  • 30. NANNIPIERI P., ASCHER J., CECCERCHINI M.T., LANDI L., PIETRAMELLARA G., RENELLA G. Microbial diversity and soil functions. Eur. J. Soil Sci. 54, 655, 2003.
  • 31. ROLDÁN A., SALINAS-GRACÍA J.R., ALGUACIL M.M., DIAZ E., CARAVACA F. Soil enzymes activities suggest advantages of conservation tillage practices in sorghum cultivation under subtropical conditions. Geoderma 129, 178, 2005.
  • 32. GOBERNA M., SANCHEZ J., PASCUAL J.A., GARCIA C. Surface and subsurface organic carbon, microbial biomass and activity in a forest soil sequence. Soil Biol. Biochem. 38, 2233, 2006.
  • 33. SONG Y., DENG S.P., ACOSTA-MARTINEZ V., KATSALIROU E. Characterization of redox-related soil microbial communities along a river floodplain continuum by fatty acid methyl ester (FAME) and 16S rRNA genes. Appl. Soil Ecol. 40, 499, 2008.
  • 34. MIKANOVÁ O., JAVŮREK M., VACH M., MARKUPOVÁ A. The influence of tilage on selected biolgical parametres. Plant Soil Environ. 52, (6), 271, 2006.
  • 35. SKAWRYŁO-BEDNARZ B. Evaluation of biological properties of soil under cultivation amaranth (Amaranthus cruentus L.). Acta Agrophys. 12, (2), 527, 2008 [in Polish].
  • 36. YANG L.J., LI T.L., FU S.F. Effect of manure and chemical fertilizer on the dynamics of soil enzymatic activities in vegetable soil. Chin. J. Soil Sci. 36, (2), 223, 2005.
  • 37. OTHA H., HATTORI T. Bacteria sensitive to nutrient broth medium in terrestrial environments. Soil Sci. Plant Nutr. 26, 14, 1980.
  • 38. PAUL E.A., CLARK F.E. Soil Microbiology and Biochemistry. Wyd. UMCS, Lublin, 2000 [In Polish].
  • 39. WEYMAN-KACZMARKOWA W. Interdependencies between oligotrophic and copiotrophic bacteria in soils of different mechanical structure. Polish J. Soil Sci. 29, (1), 65, 1996.
  • 40. WIELGOSZ D. A., SZEMBER A. The effect of selected plants on the number and activity of soil microorganisms. Ann. UMCS, sect. E 61, 107, 2006 [In Polish].
  • 41. SCHULTEN H.R., MONTREAL C.M., SCHNITZER M. Effect of long-term cultivation on the chemical structure of soil organic matter. Naturwissenschaften 81, (1), 42, 2005.
  • 42. LEVYK V., MARYSKEVYCH O., BRZEZIŃSKA M., WŁODARCZYK T. Dehydrogenase activity of technogenic soils of former sulphur mines (Yavoriv and Nemyriv, Ukraine). Int. Agrophys. 21, 255, 2007.
  • 43. STĘPNIEWSKI W., STĘPNIEWSKA Z., GLIŃSKI J., BRZEZIŃSKA M., WŁODARCZYK T., PRZYWARA G., VARALLAY G., RAJKAI K. Dehydrogenase activity of some Hungarian soils as related to their water and aeration status. Int. Agrophys. 14, 341, 2000.
  • 44. PIOTROWSKA-CYPLIK A., CYPLIK P., CZARNECKI Z. Measurement of dehydrogenase activity and traditional method of microorganisms count estimation as indicators of microorganisms activity in compost from municipal sewage sludge. J. Res. Appl. Agric. Eng. 52, (4), 22, 2007.
  • 45. CORSTANJE R., REDDY K.R. Microbial indicators of nutrient enrichment. Soil Sci. Soc. Am. J. 70, 1652, 2006.
  • 46. TIAN J., VENKATACHALAM P., LIAO H., YAN X., RAGHOTHAMA K. Molecular coloning and characterization of phosphorus starvation responsive genes in common bean (Phaseolus vulgaris L.). Planta 227, 151, 2007.
  • 47. KOBUS J. Biological processes and formation of soil fertility. Zesz. Probl. Post. Nauk Roln. 421a, 209, 1995 [In Polish].
  • 48. QUEMADA M., MENACHO E. Soil respiration 1 year after sewage sludge application. Biol. Fertil. Soils. 33, 344, 2001.
  • 49. SWĘDRZYŃSKA D. Effect of inoculation with Azospirillum brasilense on development and yielding of winter wheat and oat under different cultivation conditions. Pol. J. Environ. Stud. 9, (5), 423, 2000.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-ba369596-5447-4225-b41a-1a2c72e7c102
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.