Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 35 | 05 |
Tytuł artykułu

NAC (NAM/ATAF/CUC) transcription factors in different stresses and their signaling pathway

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Plants have evolved several molecular mechanisms to cope with biotic and abiotic stresses. Successful adaptation to stress is regulated through the activation or repression of the effects of transcription factors on specific target genes. The NAC (NAM, ATAF and CUC) transcription factors (TFs), which constitute one of the largest plant-specific transcription factor family, have been reported to be involved in plant development, biotic and abiotic stress regulation. Thus NAC TFs might be promising candidates for improving plants’ stress tolerance. Ongoing research on this transcription factor family has greatly broadened our knowledge in terms of its structure, functions, interaction with phytohormones, evolution and usage. This review focuses on the current status of NACs as regulators of stress.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
35
Numer
05
Opis fizyczny
p.1397-1408,fig.,ref.
Twórcy
autor
  • Department of Horticulture, Auburn University, 101 Funchess Hall, Auburn, AL 36849, USA
autor
  • Department of Horticulture, Auburn University, 101 Funchess Hall, Auburn, AL 36849, USA
Bibliografia
  • Anderson CL, Bremer K, Friis EM (2005) Dating phylogenetically basal eudicots using rbcL sequences and multiple fossil reference points. Am J Bot 92:1737–1748
  • Anjum SA, Xie XY, Wang LC, Saleem MF, Man C, Lei W (2011) Morphological, physiological and biochemical responses of plants to drought stress. African Agric Research 6:2026–2032
  • Avanci NC, Luche DD, Goldman GH, Goldman MHS (2010) Jasmonates are phytohormones with multiple functions, including plant defense and reproduction. Genet Mol Res 9:484–505
  • Balazadeh S, Siddiqui H, Allu AD, Matallana-Ramirez LP, Caldana C, Mehrnia M, Zanor MI, Ko¨hler B, Mueller-Roeber B (2010) A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence. Plant J 62:250–264
  • Bollhoner B, Prestele J, Tuominen H (2012) Xylem cell death: emerging understanding of regulation and functions. J Exp Bot 63:1081–1094
  • Bostock RM (2005) Signal crosstalk and induced resistance: stradding the line between cost and benefit. Annu Rev Phytopathol 43:545–580
  • Boter M, Ruiz-Rivero O, Abdeen A, Prat S (2004) Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis. Genes Dev 18:1577–1591
  • Breeze E, Harrison E, McHattie S, Hughes L, Hickman R, Hill C, Kiddle S, Kim YS, Penfold CA, Jenkins D, Zhang CJ, Morris K, Jenner C, Jackson S, Thomas B, Tabrett A, Legaie R, Moore JD, Wild DL, Ott S, Rand D, Beynon J, Denby K,Mead A, Buchanan-Wollaston V (2011) High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell 23:873–894
  • Bu QY, Jiang HL, Li CB, Zhai QZ, Zhang JY, Wu XQ, Sun JQ, Xie Q, Li CY (2008) Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defence responses. Cell Res 18:756–767
  • Buchanan-Wollaston, Page T, Harrison E, Breeze E, Lim PO, Nam GH, Lin JF, Wu SH, Swidzinski J, Ishizaki K, Leaver CJ (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42:567–585
  • Carviel JL, Al-Daoud F, Neumann M, Mohammad A, Provart NJ, Moeder W, Yoshioka K, Cameron RK (2009) Forward and reverse genetics to identify genes involved in the age-related resistance response in Arabidopsis thaliana. Mol Plant Pathol 10:621–634
  • Chen Q, Wang Q, Xiong L, Lou Z (2011) A structural view of the conserved domain of rice stress-responsive NAC1. Protein Cell 2:55–63
  • Davies TJ, Barraclough TG, Chase MW, Soltis PS, Soltis DE, Savolainen V (2004) Darwin’s abominable mystery: insights from a supertree of the angiosperms. Proc Natl Acad Sci USA 101:1904–1909
  • Delessert C, Kazan K, Wilson IW, Van Der Straeten D, Manners J, Dennis ES, Dolferus R (2005) The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis. Plant J 43:745–757
  • Devoto A, Nieto-Rostro M, Xie D, Ellis C, Harmston R, Patrick E, Davis J, Sherratt L, Coleman M, Turner JG (2002) COI1 links jasmonate signaling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. Plant J 32:457–466
  • Duval M, Hsieh TF, Kim SY, Thomas TL (2002) Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily. Plant Mol Biol 50:237–248
  • Ernst HA, Olsen AN, Skriver K, Larsen S, Leggio LL (2004) Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. EMBO Rep 5:297–303
  • Fang Y, You J, Xie K, Xie W, Xiong L (2008) Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Mol Genet Genomics 280:547–563
  • Faria JAQA, Reis PAB, Reis MTB, Rosado GL, Pinheiro GL, Mendes GC, Fontes EPB (2011) The NAC domain-containing protein, GmNAC6, is a downstream component of the ER stress- and osmotic stress-induced NRP-mediated cell-death signaling pathway. BMC Plant Biol 11:129
  • Finkler A, Ashery-Padan R, Fromm H (2007) CAMTAs: calmodulinbinding transcription activators from plants to human. FEBS Lett 581:3893–3898
  • Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran LS, Yamaguchi-Shinozaki K, Shinozaki KA (2004) Dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J 39:863–876
  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view fromthe points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442
  • Galon Y, Finkler A, Fromm H (2010) Calcium-regulated transcription in plants. Molecular Plant 3:653–669
  • Gepstein S, Dabehi G, Carp MJ, Hajouj T, Nesher MFO, Yariv I, Dor C, Brassani M (2003) Large-scale identification of leaf senescence- associated genes. Plant J 36:629–642
  • Ghassemian M, Nambara E, Cutler S, Kawaide H, Kamiya Y, McCourt P (2002) Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. Plant Cell 12:1117–1126
  • Gibson SI (2004) Sugar and phytohormone response pathways: navigating a signaling network. J Exp Botany 55:253–264
  • Guo Y, Gan S (2006) AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J 46:601–612
  • Halliwell B (2006) Reactive species and antioxidants: redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322
  • Hao YJ, Song QX, Chen HW, Zou HF, Wei W, Kang XS, Ma B, Zhang WK, Zhang JS, Chen SY (2010) Plant NAC-type transcription factor proteins contain a NARD domain for repression of transcriptional activation. Planta 232:1033–1043
  • Hao YJ, Wei W, Song QX, Chen HW, Zhang YQ, Wang F, Zou HF, Lei G, Tian AG, Zhang WK, Ma B, Zhang JS, Chen SY (2011) Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant J 68:302–313
  • He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS, Chen SY (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J 44:903–916
  • Hu H, Dai M, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103:12987–12992
  • Hu H, You J, Fang Y, Zhu X, Qi Z, Xiong L (2008) Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol 67:169–181
  • Hu R, Qi G, Kong YZ, Kong DJ, Gao Q, Zhou GK (2010) Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa. BMC Plant Biol 10:145
  • Hui S, Yanbin Y, Fang C, Ying X, Richard AD (2009) A bioinformatic analysis ofNAC genes for plant cell wall development in relation to lignocellulosic bioenergy production. Bioenerg Res 2:217–232
  • Iba K (2002) Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu Rev Plant Biol 53:225–245
  • Jaillon O, Aury JM, Noel B, Policriti A, Crepet C et al (2007) The grapevine genome sequence suggests ancestral hexaplodization in major angiosperm phyla. Nature 449:463–467
  • Jensen MJ, Jesper JH, Gregersen PL, Gjetting T, Fuglsang AT, Hansen M, Joehnk N, Lyngkjaer MF, Collinge DB (2007) The HvNAC6 transcription factor: a positive regulator of penetration resistance in barley and Arabidopsis. Plant Mol Biol 65:137–150
  • Jensen MK, Kjaersgaard T, Nielsen ML, Galberg P, Petersen K, O’Shea C, Skriver K (2010) The Arabidopsis thaliana NAC transcription factor family: structure-function relationships and determinants of ANA019 stress signaling. Biochem J 426: 183–196
  • Jeong JS, Kim YS, Baek KH, Jung H, Ha SH, Choi YD, Kim M, Reuzeau C, Kim JK (2012) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol 153:186–197
  • Kaneda T, Taga Y, Takai R, Iwano M, Matsui H, Takayama S, Isogai A, Che FS (2009) The transcription factor OsNAC4 is a key positive regulator of plant hypersensitive cell death. EMBO J 28:926–936
  • Kato H, Motomura T, Komeda Y, Saito T, Kato A (2010) Overexpression of the NAC transcription factor family gene ANAC036 results in a dwarf phenotype in Arabidopsis thaliana. J Plant Physiol 167:571–577
  • Kim YS, Kim SG, Park JE, Park HY, Lim MH, Chua NH, Park C-M (2006) A membrane-bound NAC transcription factor regulates cell division in Arabidopsis. Plant Cell 18:3132–3144
  • Kim SG, Kim SY, Park CM (2007a) A membrane-associated NAC transcription factor regulates salt-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Planta 226:647–654
  • Kim SY, Kim SG, Kim YS, Seo PJ, Bae M, Yoon HK, Park CM (2007b) Exploring membrane-associated NAC transcription factors in Arabidopsis: implications for membrane biology in genome regulation. Nucleic Acids Res 35:203–213
  • Kim HS, Park BO, Yoo JH, Jung MS, Lee SM, Han HJ, Kim KE, Kim SH, Lim CO, Yun DJ, Lee SY, Chung WS (2007c) Identification of a calmodulin-binding NAC protein as a transcriptional repressor in Arabidopsis. J Biol Chem 282:36292–36302
  • Kimura M, Yamamoto YY, Seki M, Sakarai T, Sato M, Abe T, Yoshida S, Manabe K, Shinozaki K, Matsui M (2003) Identification of Arabidopsis genes regulated by high light-stress using cDNA microarray. Photochem Photobiol 77:226–233
  • Kjaersgaard T, Jensen MK, Christiansen MW, Gregersen P, Kragelund BB, Skriver K (2011) Senescence-associated barley NAC (NAM, ATAF1,2, CUC) transcription factor interacts with radical-induced cell death 1 through a disordered regulatory domain. J Biol Chem 286:35418–35429
  • Kleinow T, Himbert S, Krenz B, Jeske H, Koncz C (2009) NAC domain transcription factor ATAF1 interacts with SNF1-related kinases and silencing of its subfamily causes severe developmental defects in Arabidopsis. Plant Sci 177:360–370
  • Li DT, Nishiyama R, Watanabe Y, Michida K, Yamaguchi-Shinizaki K, Shinozaki K, Tran LSP (2011a) Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res 18:263–276
  • Li P, Wind JJ, Shia XL, Zhang HL, Hanson J, Smeekens SC, Teng S (2011b) Fructose sensitivity is suppressed in Arabidopsis by the transcription factor ANAC089 lacking the membrane bound domain. Proc Natl Acad Sci USA 108:3436–3441
  • Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136
  • Lin JF, Wu SH (2004) Molecular events in senescing Arabidopsis leaves. Plant J 39:612–628
  • Lin RM, Zhao WS, Meng XB, Wang M, Peng YL (2007) Rice gene OsNAC19 encodes a novel NAC-domain transcription factor and responds to infection by Magnaporthe grisea. Plant Sci 172:120–130
  • Liu YZ, Baig MNR, Fan R, Ye JL, Cao YC, Deng XX (2009) Identification and expression pattern of a novel NAM, ATAF, and CUC-Like gene from Citrus sinensis Osbeck. Plant Mol Biol Rep 27:292–297
  • Lorenzo O, Chico JM, Sanchez-Serrano JJ, Solano R (2004) JASMONATE-INSENSITIVE 1 encodes a MYC transcription factor essential to discriminate between different jasmonate jasmonateregulated defense responses in Arabidopsis. Plant Cell 16: 1938–1950
  • Lu PL, Chen NZ, An R, Su Z, Qi BS, Ren F, Chen J, Wang XC (2007) A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stressresponsive genes in Arabidopsis. Plant Mol Biol 63:289–305
  • Mao X, Zhang H, Qian X, Li A, Zhao G, Jing R (2012) TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. J Exp Bot 10:1–14
  • Maor R, Shirasu K (2005) The arms race continues: battle strategies between plants and fungal pathogens. Curr Opin Microbiol 8:399–404
  • Matts J, Jagadeeswaran G, Roe B-A, Sunkar R (2010) Identification of microRNAs and their targets in switchgrass, a model biofuel plant species. J Plant Physiol 167:896–904
  • Meuwly P, Mo¨lders W, Buchala A, Me´traux JP (1995) Local and systemic biosynthesis of salicylic acid in infected cucumber plants. Plant Physiol 109:1107–1114
  • Morishita T, Kojima Y, Maruta T, Nishizawa-Yokoi A, Yabuta Y, Shigeoka S (2009) Arabidopsis NAC transcription factor, ANAC078, regulates flavonoid biosynthesis under high-light. Plant Cell Physiol 50:2210–2222
  • Muller CW (2001) Transcription factors: global and detailed views. Curr Opin Struct Biol 11:26–32
  • Nakashima K, Tran LS, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51:617–630
  • Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Schinozaki K (2012) NAC transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819:97–103
  • Nuruzzaman M, Manimekalai R, Sharoni AM, Satoh K, Kondoh H, OOka H, Kikuchi S (2010) Genome-wide analysis of NAC transcription factor family in rice. Gene 465:30–44
  • Olsen AN, Ernst HA, Leggio LL, Skriver K (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10:79–87
  • Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P, Hayashizaki Y, Suzuki K, Kojima K, Takahara Y, Yamamoto K, Kikuchi S (2003) Comprehensive Analysis of NAC Family Genes in Oryza sativa and Arabidopsis thaliana. DNA Res 10:239–247
  • Overmyer K, Brosche M, Kangasjarvi J (2003) Reactive oxygen species and hormonal control of cell death. Trends Plant Sci 8:335–342
  • Overmyer K, Brosché M, Pellinen R, Kuittinen T, Tuominen H, Ahlfors R, KeinänenM, SaarmaM, ScheelD, Kangasjärvi J (2005) Ozone-induced programmed cell death in the Arabidopsis radicalinduced cell death 1 mutant. Plant Physiol 137:1092–1104
  • Park J, Kim YS, Kim SG, Jung JH, Woo JC, Park CM (2011) Integration of auxin and salt signals by the NAC transcription factor NTM2 during seed germination in Arabidopsis. Plant Physiol 156:537–549
  • Peng H, Cheng HY, Chen C, Yu XW, Yang JN, Gao WR, Shi QH, Zhang H, Li JG, Ma H (2009a) A NAC transcription factor gene of chickpea (Cicer arietinum), CarNAC3, is involved in drought stress responses and various developmental processes. J Plant Physiol 166:1934–1945
  • Peng H, Cheng HY, Yu XW, Shi QH, Zhang H, Li JG, Ma H (2009b) Characterization of a chickpea (Cicer arietinum L.) NAC family gene, CarNAC5, which is both developmentally- and stressregulated. Plant Physiol Biochem 47:1037–1045
  • Pinheiro GL, Marques CS, Costa MDBI, Reis PAB, Alves MS, Carvalho CM, Fietto LG, Fontes EPB (2009) Complete inventory of soybean NAC transcription factors: sequence conservation and expression analysis uncover their distinct roles in stress response. Gene 444:10–23
  • Popescu SC, Popescu GV, Bachan S, Zhang Z, Seay M, Gerstein M, Snyder M, Dinesh-Kumar SP (2007) Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays. Proc Natl Acad Sci U S A 104:4730–4735
  • Puranik S, Sahu PP, Srivastava PS, Prasad M (2012) NAC proteins: regulation and role in stress tolerance. Trends Plant Sci 17:369–381
  • Raskin (1992) Role of salicylic acid in plants. Annu Rev Plant Physiol Plant Mol Bioi 43:439–463
  • Reymond P, Weber H, Damond M, Farmer EE (2000) Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12:707–719
  • Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696
  • Rosahl S, Feussner I (2005) Oxylipins. In: Murphy DJ (ed) Plant lipids: biology. utilization and manipulation. Blackwell publishing Ltd/CRC press, Oxford and Boca Raton, pp 329–354
  • Rushton PJ, Bokowiec MT, Han S, Zhang H, Brannock JF, Chen X, Laudeman TW, Timko MP (2008) Tobacco transcription factors: novel insights into transcriptional regulation in the Solanaceae. Plant Physiol 147:280–295
  • Safrany J, Haasz V, Mate Z, Ciolfi A, Feher B, Oravecz A, Stec A, Dallmann G, Morelli G, Ulm R, Nagy F (2008) Identification of a novel cis-regulatory element for UV-B-induced transcription in Arabidopsis. Plant J 54:402–414
  • Seo PJ, Kim SG, Park C-M (2008) Membrane-bound transcription factors in plants. Trends Plant Sci 13:550–556
  • Shen H, Yin Y-B, Chen FXY, Dixon RA (2009) A bioinformatic analysis of NAC genes for plant cell wall development in relation to lignocellulosic bioenergy production. Bioenerg Res 2:217–232
  • Si Y, Zhang C, Meng S, Dane F (2009) Gene expression changes in response to drought stress in Citrullus colocynthis. Plant Cell Rep 28:997–1009
  • Simillion C, Van de Poele K, Van Montagu MC, Zabeau M, Van de Peer Y (2002) The hidden duplication past of Arabidopsis thaliana. Proc Natl Acad Sci USA 99:13627–13632
  • Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu J-K, Shinozaki K (2004) Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol 135:1697–1709
  • Takasaki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K, Nakashima K (2010) The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol Genet Genomics 284:173–183
  • Tamaoki M, Freeman JL, Marqusè L, Pilon-Smits EAH (2008) New insights into the roles of ethylene and jasmonic acid in the acquisition of selenium resistance in plants. Plant Signal Behav 3:865–867
  • Tang H, Bowers JE, Wang X, Patersona AH (2009) Angiosperm genome comparisons reveal early polyploidy in the monocot lineage. Proc Natl Acad Sci USA 107:472–477
  • Tran LSP, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought responsive cis-element in the early responsive to ehydration stress 1 promoter. Plant Cell 16:2481–2498
  • Tran LSP, Nishiyama R, Yamaguchi-Shinozaki K, Shinozaki K (2009a) Potential utilization of NAC transcription factors to enhance abiotic stress tolerance in plants by biotechnological approach. GM Crops 1:32–39
  • Tran LS, Quach TN, Guttikonda SK, Aldrich DL, Kumar R, Neelakandan A, Valliyodan B, Nguyen HT (2009b) Molecular characterization of stress-inducible GmNAC genes in soybean. Mol Genet Genomics 281:647–664
  • Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604
  • Tuteja N, Sopory SK (2008) Chemical signaling under abiotic stress environment in plants. Plant Behavior 3:525–536
  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223
  • Walker EL, Connolly EL (2008) Time to pump iron: iron-deficiencysignaling mechanisms of higher plants. Current Opin Plant Biol 11:530–535
  • Welner DH, Lindemose S, Grossmann JG, Møllegaard, Olsen AN, Helgstrand C, Skriver K, Leggio LL (2012) DNA binging by the plant specific NAC transcription factors in crystal and solution: a firm link to WRKY and GCM transcription factors. Biochem Journal doi:10.1042/BJ20111742
  • Wu A, Allu AD, Garapati P, Siddiqui H, Dortay H, Zanor MI, Asensi-Fabado MA, Munne0 -Bosch S, Antonio C, Tohge T, Fernie AR, Kaufmann K, Xue GP, Mueller-Roeber B, Balazadeh S (2012) JUNGBRUNNEN1, a reactive oxygen species–responsive nac transcription factor, regulates longevity in Arabidopsis. Plant Cell 24:482–506
  • Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG (1998) COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280:1091–1094
  • Xie Q, Frugis G, Colgan D, Chun NH (2000) Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev 14:3024–3036
  • Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant response to osmotic stress. Plant Cell Environ 25:131–139
  • Xu L, Liu F, Lechner E, Genschik P, Crosby WL, Ma H, Peng W, Huang D, Xi D (2002) The SCF(COI1) ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell 14:1919–1935
  • Xu G, Ma H, Nei M, Kong H (2009) Evolution of F-box genes in plants: different modes of sequence divergence and their relationships with functional diversification. Proc Natl Acad Sci USA 106:835–840
  • Yang SD, Yoon HK, Park CM (2011) The Arabidopsis NAC transciption factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes. Plant Cell 23:2155–2168
  • Yoon HK, Kim SG, Kim SY, Park CM (2008) Regulation of leaf senescence by NTL-9 mediated osmotic stress signaling in Arabidopsis. Mol Cells 25:438–445
  • Yoshida S (2003) Molecular regulation of leaf senescence. Curr Opin Plant Biol 6:79–84
  • Yoshii M, Yamazaki M, Rakawal R, Kishi-Kaboshi M, Miyao K, Hirochika H (2010) The NAC transcription factor RIM1 of rice is a new regulator of jasmonate signaling. Plant J 61:804–815
  • Zhu T, Nevo E, Sun D, Peng J (2012) Phylogenetic analyses unravel the evolutionary history of NAC proteins in plants. Evolution. doi:10.1111/j.1558-5646.2011.01553.x
  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) Genevestigator Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632
  • Zinn KE, Tunc-Ozdemir M, Harper JF (2010) Temperature stress and plant sexual reproduction: uncovering the weakest links. J Exp Bot 61:1959–1968
Uwagi
rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-b747844f-a6e2-4e09-aa3f-b69fe402bbdf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.