Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 24 | Special Issue S1 |
Tytuł artykułu

Investigations on water circulation in animal sea-water basins - on the example of seals' breeding pools

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents general comments concerning investigations on water circulation in animal breeding pools containing sea water. As an example are given results of computer simulation of water circulation in seals’ breeding pools situated in Marine Station at Hel, belonging to Oceanographic Institute , Gdansk University. A mathematical model of three main pools was prepared with taking into account their inflow and outflow water supply points. Next, the object indication ( tracer) tests were done with the use of mathematical modelling as well as in-situ measurements. For description of flow field in steady conditions a simplified model of 2D flow in the form of Helmholtz biharmonic equation of stream function , recalculated then into velocity vector components, was used. The equation , supplemented with appropriate boundary conditions , was solved numerically by using the finite differences method. The spreading of a substance dissolved in water (tracer) was analyzed by solving 2D equation of transient advecting - dispersing transport. To solve it the finite volumes method was applied. The applied model was verified by conducting the indication tests with the use of the rhodamine WT as a tracer. The obtained results made it possible to reconstruct water circulation within the seals’ pools and identify stagnation zones in which water circulation may be made difficult
Słowa kluczowe
Wydawca
-
Rocznik
Tom
24
Opis fizyczny
p.224-229,fig.,ref.
Twórcy
autor
  • Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland
Bibliografia
  • 1. Anderson J. D.: Computational Fluid Dynamics. The Basics with Applications, McGraw-Hill Inc., New York, USA (1995), pp. 1÷547
  • 2. Burdziakowski P., Janowski A., Kholodkov A., Matysik K., Matysik M., Przyborski M., Szulwic J., Tysiąc P., Wojtowicz A.: Maritime Laser Scanning As The Source For Spatial Data, Polish Maritime Research, Vol. 22, No. 4(88) (2015), pp. 9÷14
  • 3. Elder J.W.: The dispersion of marked fluid in turbulent shear flow, J. of Fluid Mech., Vol. 5, No. 4 (1956), pp. 544÷560
  • 4. Grelowska G., Kozaczka E., Kozaczka S.: Gdansk Bay sea bed sounding and classification of its results, Polish Maritime Research, Vol. 20, No 3 (2013), pp. 45÷50
  • 5. Grelowska G., Kozaczka E.: Underwater Acoustic Imaging of the Sea, Archives of Acoustics, Vol. 39, No. 4 (2014), pp. 439÷452
  • 6. Kozaczka E., Grelowska G., Kozaczka S., Szymczak W.: Processing data on sea bottom structure obtained by means of the parametric sounding, Polish Maritime Research, Vol. 19, No 4(76) (2012), pp. 3÷10
  • 7. K o z a c z k a E . : Acoustics waves in the sea, Archives of Acoustics, Vol. 38, No. 3 (2013), pp. 441÷442
  • 8. Lehnert K., Müller S., Weirup L., Ronnenberg K., Pawlicz-ka I., Rosenberger T., Siebert U.: Molecular Biomarkers in Grey Seals (Halichoerus grypus) to Evaluate Pollutant Exposure, Health and Immune Status, Marine Pollution Bulletin, Vol. 88, No. 1÷2 (2014), pp. 311÷318.
  • 9. LeVeque R. J.: Finite Volume Method for Hyperbolic Problems, Cambridge University Press, New York, USA (2002), pp. 1÷558
  • 10. Lipeme Kouyi, G.,Vazquez, J., Poulet, J.: 3D free surface measurement and numerical modelling of flows in storm overflows, Flow Measurement and Instrumentation, Vol.14, No. 3 (2003), pp. 79÷87
  • 11. Meerschaert M. M.: Mathematical Modeling, 4 ed. Elser-vier Science (2013), pp. 365
  • 12. Puzyrewski R., Żochowski K., Flaszyński P.: A Method for Analyzing Ram Pressure Characteristics of Impeller Pump Rotor, Polish Maritime Research, Vol. 17, No. 2(64) (2010), pp. 52÷57
  • 13. Sawicki J.M; Zima P.: The Influence of Mixed Derivatives on The Mathematical Simulation of Pollutants Transfer, 4th International Conference on Water Pollution, Bled, Slovenia (1997), pp. 627÷635
  • 14. Setälä O., Fleming-Lehtinen V., Lehtiniemi M.: Ingestion and Transfer of Microplastics in The Planktonic Food Web,Environmental Pollution, Vol. 185 (2014), pp. 77÷83
  • 15. Szantyr J., Flaszyński P., Tesch K., Suchecki W., Alabrudziński S.: An Experimental and Numerical Study of Tip Vortex Cavitation, Polish Maritime Research, Vol. 18, No. 4 (2011), pp. 14÷22
  • 16. Szewc K., Pozorski J., Minier J.: Analysis of The Incom-pressibility Constraint in The Smoothed Particle Hydro-dynamics Method, International Journal for Numerical Methods in Engineering, Vol. 92, No. 4 (2012a), pp. 343÷369
  • 17. Szewc K., Taniere A., Pozorski J., Minier J.: A Study on Application of Smoothed Particle Hydrodynamics to Multi-Phase Flows, International Journal of Nonlinear Sciences and Numerical Simulation (2012b), pp. 383÷395
  • 18. Szymkiewicz R.: Numerical Modeling in Open Channel Hydraulics, Book Series: Water Science and Technology Library, vol. 83 (2010), pp. 1-419;
  • 19. Szymkiewicz R.: Finite-Element Method for the Solu-tion of the Saint -Venant Equations in an Open Channel Network. Journal Of Hydrology, Vol. 122, No. 1÷4 (1991), pp. 275÷287
  • 20. Zima P.: Numerical Simulations and Tracer Studies as a Tool to Support Water Circulation Modeling in Breeding Reservoirs, Archives of Hydro-Engineering and Environ-mental Mechanics, Vol. 61 (2014), No 3÷4, pp. 113÷123
  • 21. Zima, P., Mąkinia, J., Swinarski, M., Czerwionka, K.:Combining Computational Fluid Dynamics with a Biokinetic Model for Predicting Ammonia and Phos-phate Behavior in Aeration Tanks, Water Environment Research, Vol. 81, No. 11 (2009), pp. 2353÷2362 .
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-b6c720c9-1d37-4cf8-839c-fefd1fb0349b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.