Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 23 | 5 |
Tytuł artykułu

Short rotation woody crops grown on marginal soil for biomass energy

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Short rotation woody crops are grown to be used as feedstock for energy and industrial purposes in many countries of Europe, and in the USA and Canada. Wood biomass is acquired from forests, the wood industry, and as a by-product of trimming trees and bushes. In future, considerable amounts of wood biomass should be supplied by dedicated energy crops (willow, poplar, black locust). The aim of this study was to determine the morphological features, yield and energy value of the yield of three species of plants grown at a site with poor soil quality and low usability for edible crops. The study has shown that the species of willow and poplar can be grown on poor quality agricultural land because they provide high yield, high energy, and high coal equivalent. However, the biomass of black locust may fail to provide sufficient yield to justify setting up a plantation using this species.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
23
Numer
5
Opis fizyczny
p.1727-1739,fig.,ref.
Twórcy
  • Department of Plant Breeding and Seed Production, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Plac Lodzki 3/420, 10-724 Olsztyn, Poland
  • Department of Plant Breeding and Seed Production, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Plac Lodzki 3/420, 10-724 Olsztyn, Poland
  • Department of Plant Breeding and Seed Production, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Plac Lodzki 3/420, 10-724 Olsztyn, Poland
  • Department of Plant Breeding and Seed Production, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Plac Lodzki 3/420, 10-724 Olsztyn, Poland
autor
  • Department of Soil Science and Soil Protection, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
Bibliografia
  • 1. LABRECQUE M., TEODORESCU T. L. Field perfor­mance and biomass production of 12 willow and poplar clones in short-rotation coppice in southern Quebec (Canada). Biomass Bioenerg. 29, (1), 1, 2005.
  • 2. VOLK T. A., ABRAHAMSON L. P., NOWAK C. A., SMART L. B., THARAKAN P. J., WHITE E. H. The development of short-rotation willow in the northeastern United States for bioenergy and bioproducts, agroforestry and phytoremediation. Biomass Bioenerg. 30, (8-9), 715, 2006.
  • 3. AEBIOM. 2011 annual statistical report on the contribution of biomass to the energy system in the EU27. Brussels, Belgium, pp. 102, 2011.
  • 4. FABER A, PUDEŁKO R, BOREK R, BORZECKA- WALKER M, SYP A, KRASUSKA E, MATHIOU P. Economic potential of perennial energy crops in Poland. J. Food Agric. Environ. 10, (3-4), 1178, 2012.
  • 5. PUDEŁKO R, BORZĘCKA-WALKER M, FABER A, BOREK R, JAROSZ Z, SYP A. The technical potential of perennial energy crops in Poland. J Food Agric. Environ. 10, (2), 781, 2012.
  • 6. GONZALEZ-GARĆIA S., GASOL C. M., GABARRELL X., RIERADEVALL J., TERESA MOREIRA M., FEIJOO G. Environmental profile of ethanol from poplar biomass as transport fuel in Southern Europe. Renew. Energ. 35, 1014, 2010.
  • 7. SPINELLI R., NATI C., MAGAGNOTTI N. Using modi­fied foragers to harvest short-rotation poplar plantations. Biomass Bioenerg. 33, 817, 2009.
  • 8. ARAVANOPOULOS F.A. Breeding of fast growing forest tree species for biomass production in Greece. Biomass Bioenerg. 34, 1531, 2010.
  • 9. REDEI K., OSVATH-BUJTAS Z., VEPERDI I. Black Locust (Robinia pseudoacacia L.) Improvement in Hungary: a Review. Acta Silv. Lign. Hung. 4, 127, 2008.
  • 10. REDEI K., VEPERDI I., CSIHA I., KESERU Z., GYORI J. Yield of black locust (Robinia pseudoacacia L.) short rota­tion energy crops in Hungary: Case study in the field trial. Lesnicky casopis. 56, (4), 327, 2010.
  • 11. GAJEWSKI R. BIOB market potential for energy purpos­es. (In:) P. Bocian, T. Golec, J. Rakowski (Eds.). Modern technology of biomass production and use for energy pur­poses, Instytut Energetyki: Warsaw, pp 414-418, 2010 [In Polish].
  • 12. ES/PAP 2012. Largest European energy woody crop planta­tion. Baltic Daily] http://www.dziennikbaltycki.pl/ artykul/553881,kwidzyn-najwieksza-w-europie-plantacja- drzew-energetycznych,id,t.html (23.07.2012). 2012. [In Polish].
  • 13. EUROSTAT. Energy, transport and environment indicators. Pocketbooks, pp. 218, 2011.
  • 14. WANG Z., DUNN J. B., WANG M. Q. GREET Model Short Rotation Woody Crops (SRWC) Parameter Development. Center for Transportation Research. Argonne National Laboratory.(greet.es.anl.gov/files/greet-SRWC- Development) (25.10.2013). 2013.
  • 15. STOLARSKI M., KRZYŻANIAK M., GRABAN Ł. Evaluation of energy-related and economic aspects of heat­ing a family house with dendromass in the north-east of Poland. Energy Build. 43, 433, 2011.
  • 16. STOLARSKI M. J., KRZYŻANIAK M., WARMIŃSKI K., ŚNIEG M. Energy, economic and environmental assessment of heating a family house with biomass. Energy Build. 66, 395, 2013.
  • 17. OWOC D., WALCZYK J. Use of energy willow for the pro­duction of energy in the Podkarpackie province. Acta Sci. Pol. Silv. Colendar. Rat. Ind. Lignar. 12, (1), 37, 2013.
  • 18. WIŚNIEWSKI G., MICHAŁOWSKA-KNAP K., ARCIPOWSKA A. On the unsustainable use of renewable energy resources in Poland and the pathology of the RES support system. Proposals for changes in the approach to the promotion of renewable energy sources and trends in bio­mass resources. Instytut Energetyki Odnawialnej: Warsaw, pp. 29, 2012.
  • 19. STOLARSKI M. J., KRZYŻANIAK M., SZCZUKOWSKI S., TWORKOWSKI J., BIENIEK A. Dendromass derived from agricultural land as energy feedstock. Pol. J. Environ. Stud. 22, (2), 511, 2013.
  • 20. MOLA-YUDEGO B. Trends and productivity improve­ments from commercial willow plantations in Sweden during the period 1986-2000. Biomass Bioenerg. 35, (1), 446, 2011.
  • 21. TWORKOWSKI J., KUŚ J., SZCZUKOWSKI S., STO­LARSKI M. J. Productivity of energy crops. (In:) P. Bocian, T. Golec, J. Rakowski (Eds.). Modern technology of bio­mass production and use for energy purposes, Instytut Energetyki: Warsaw, pp. 34-49, 2010 [In Polish].
  • 22. KOPP R.F., ABRAHAMSON L. P., WHITE E. H., BURNS K. F., NOWAK C. A. Cutting cycle and spacing effects on biomass production by a willow clone in New York. Biomass Bioenerg. 12, (5), 313, 1997.
  • 23. TAHVANAINEN L., RYTKÖNEN V. M. Biomass produc­tion of Salix viminalis in southern Finland and the effect of soil properties and climate conditions on its production and survival. Biomass Bioenerg. 16, (2), 103, 1999.
  • 24. ADEGBIDI H. G., VOLK T. A., WHITE E. H., ABRA- HAMSON L. P., BRIGGS, R. D., BICKELHAUPT D. H. Biomass and nutrient removal by willow clones in experi­mental bioenergy plantations in New York State. Biomass and Bioenergy, 20, (6), 399, 2001.
  • 25. LOWTHE-THOMAS S. C., SLATER F. M., RANDER- SON P. F. Reducing the establishment costs of short rotation willow coppice (SRC) - A trial of a novel layflat planting system at an upland site in mid-Wales. Biomass Bioenerg. 34, (5), 677, 2001.
  • 26. KUŚ J., MATYKA, M. Yielding and biometric characters of energy willow depending on the habitat conditions. Probl. Inż. Roln. 3, 59, 2010 [In Polish].
  • 27. GUO X.-y., ZHANG X.-s. Performance of 14 hybrid poplar clones grown in Beijing, China. Biomass Bioenerg. 34, (6), 906, 2010.
  • 28. LAUREYSENS I., PELLIS A., WILLEMS J., CEULE- MANS R. Growth and production of a short rotation cop­pice culture of poplar. III. Second rotation results. Biomass Bioenerg. 29, (1), 10, 2005.
  • 29. ARAVANOPOULOS F.A. Breeding of fast growing forest tree species for biomass production in Greece. Biomass Bioenerg. 34, (11), 1531, 2010.
  • 30. GRÜNEWALD H., BÖHM C., QUINKENSTEIN A., GRUNDMANN P., EBERTS J., WÜHLISCH G. Robinia pseudoacacia L.: A Lesser Known Tree Species for Biomass Production. BioEnerg. Res. 2, (3), 123, 2009.
  • 31. QUAYE A. K., VOLK T. A. Biomass production and soil nutrients in organic and inorganic fertilized willow bio­mass production systems. Biomass Bioenerg. 57, 113, 37 2013.
  • 32. MANZONE M., AIROLDI G., BALSARI P. Energetic and 38 economic evaluation of a poplar cultivation for the bio­mass production in Italy. Biomass Bioenerg. 33, 1258, 2009.
  • 33. WALLE I. V., VAN CAMP N., VAN DE CASTEELE L., VERHEYEN K., LEMEUR R. Short-rotation forestry of birch, maple, poplar and willow in Flanders (Belgium) II. Energy production and CO2 emission reduction potential. 40 Biomass and Bioenerg. 31, (5), 276, 2007.
  • 34. GASOL C.M., GABARRELL X., ANTON A., RIGOLA M., CARRASCO J., CIRIA P., RIERADEVALL J. LCA of poplar bioenergy system compared with Brassica carinata energy crop and natural gas in regional scenario. Biomass 41 Bioenerg. 33, (1), 119, 2009.
  • 35. STOLARSKI M. J. Agrotechnical and economic aspects of biomass production from willow coppice (Salix spp.) as an energy source, vol. 148. University of Warmia and Mazury 42 in Olsztyn, Dissertations and Monographs, pp. 43-111, 2009 [In Polish].
  • 36. KWAŚNIEWSKI D. Energy efficiency of biomass produc­tion from a 3-year-old willow. Inż. Rol. 5, (123), 113, 2010 [In Polish].
  • 37. BORJESSON P. Energy analysis of biomass production and transportation. Biomass Bioenerg. 11, (4), 305, 1996.
  • 38. BORJESSON P., BERNDES G. The prospects for willow plantations for wastewater treatment in Sweden. Biomass Bioenerg. 30, (5), 428, 2006.
  • 39. LABRECQUE M., TEODORESCU T.I., D AIGLE S. Biomass productivity and wood energy of Salix species after 2 years growth in SRIC fertilized with wastewater sludge. Biomass Bioenerg. 12, (6), 409, 1997.
  • 40. STOLARSKI M. Prospects of utilisation of renewable ener­gy. (In:) Z. Brodziński (Eds.). Current state and prospects of development of rural areas in the Warmia-Mazury region until 2020.
  • 41. Samorząd Województwa Warmińsko- Mazurskiego: Olsztyn, pp. 79-98. 2012 [In Polish].
  • 42. KRZYŻANIAK M., STOLARSKI M. J., SZCZUKOWSKI S., TWORKOWSKI J. Life cycle assessment of willow pro­duced in short rotation coppices for energy purposes. J. Biobased Mater. Bioenerg. 7, (5), 566, 2013.
  • 43. HELLER M. C., KEOLEIAN G. A., MANN M. K., VOLK T. A. Life cycle energy and environmental benefits of gen­erating electricity from willow biomass. Renewable Energ. 29, (7), 1023, 2004.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-b57b56e2-37a0-4216-9278-83cfc382fd7f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.