Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Most European bat species are insectivorous and share foraging areas to some extent. Where similar species rely on similar resources in the same foraging habitat, they are likely to interact. This study addresses the trophic niche of the Northern European trawling bat species Myotis dasycneme (Boie, 1825) and Myotis daubentonii (Kuhl, 1817), occurring in the same habitat, and possible interactions or differences within their dietary behaviour. Dietary data of both species were analysed to draw conclusions on their ecology, possible dietary overlap, hints for coexistence mechanisms and community structure. In this study, M. dasycneme and M. daubentonii fed mainly on Chironomidae (M. dasycneme: 44.4%; M. daubentonii: 32.8%) and Trichoptera (M. dasycneme: 20.4%; M. daubentonii: 22.2%), showing a high trophic niche overlap and similar niche breadth. Nevertheless, there were differences in the diet of the two species concerning the predation of chironomids. Differences also occur regarding the prey types, referring to the terrestrial or aquatic life-cycle of prey groups. This could be evidence for different foraging habitats and a spatial segregation of both species. High resource abundance is also likely to allow the coexistence of both species within the same hunting habitat.
Słowa kluczowe
Twórcy
autor
- Institute of Natural Resource Conservation, University of Kiel, Olshausenstrasse 75, 24118 Kiel, Germany
autor
- Institute of Natural Resource Conservation, University of Kiel, Olshausenstrasse 75, 24118 Kiel, Germany
autor
- Institute of Natural Resource Conservation, University of Kiel, Olshausenstrasse 75, 24118 Kiel, Germany
autor
- Kreuzstraβe 5, D-91077 Neunkirchen-Brandt, Germany
autor
- Institute of Natural Resource Conservation, University of Kiel, Olshausenstrasse 75, 24118 Kiel, Germany
Bibliografia
- 1. P. Abrams 1980. Some comments on measuring niche overlap. Ecology, 61: 44–49. Google Scholar
- 2. H. D. J. N. Aldridge , and I. L. Rautenbach . 1987. Morphology, echolocation and resource partitioning in insectivorous bats. Journal of Animal Ecology, 56: 763–778. Google Scholar
- 3. D. Almenar , J. Aihartza , U. Goiti , E. Salsamendi , and I. Garin . 2008. Diet and prey selection in the trawling longfingered bat. Journal of Zoology (London), 274: 340–348. Google Scholar
- 4. M. J. Anderson 2001. A new method for non-parametric multivariate analysis of variance. Australian Ecology, 26: 32–46. Google Scholar
- 5. E. L. P. Anthony , and T. H. Kunz . 1977. Feeding strategies of the little brown bat, Myotis lucifugus, in southern New Hampshire. Ecology, 58: 775–786. Google Scholar
- 6. R. Arlettaz , N. Perrin , and J. Hausser . 1997. Trophic resource partitioning and competition between the two sibling bat species Myotis myotis and Myotis blythii. Journal of Animal Ecology, 66: 897–911. Google Scholar
- 7. R. Arlettaz , S. Godat , and H. Meyer . 2000. Competition for food by expanding pipistrelle bat populations (Pipistrellus pipistrellus) might contribute to the decline of lesser horseshoe bats (Rhinolophus hipposideros). Biological Conservation, 93: 55–60. Google Scholar
- 8. R. M. R. Barclay , and R. M. Brigham . 1994. Constraints on optimal foraging: a field test of prey discrimination by echolocating insectivorous bats. Animal Behaviour, 48: 1013–1021. Google Scholar
- 9. M. B. Berg , and R. A. Hellenthal . 1992. The role of Chironomidae in energy flow of a lotic ecosysteme. Netherlands Journal of Aquatic Ecology, 26: 471–476. Google Scholar
- 10. S. Biscardi , D. Russo , V. Casciani , D. Cesarini , M. Mei , and L. Boitani . 2007. Foraging requirements of the endangered long-fingered bat: the influence of microhabitat structure, water quality and prey type. Journal of Zoology (London), 273: 372–381. Google Scholar
- 11. K Boettger , and A. Rudow . 1995. Die Chironomidae (Diptera, Nematocera) aus Emergenzfaengen des norddeutschen Tieflandbaches Kossau. Limnologische Studien im Natur schutzgebiet Kossautal. Limnologica, 25: 49–60. Google Scholar
- 12. M. Boonmann 2000. Roost selection by noctules (Nyctalus noctula) and Daubenton's bats (Myotis daubentonii). Journal of Zoology (London), 251: 385–389. Google Scholar
- 13. A. V. Borissenko , N. I. Sesina , I. R. Zakejeva , and A. N. Bukija . 1999. Contribution to the study of trophic biology of three bat species (Chiroptera: Vespertilionidae) in Moscow region. Plecotus et al. , 2: 36–43. Google Scholar
- 14. A. R. C. Britton , G. Jones , J. M. V Rayner , A. M. Boonman , and B. Verboom . 1997. Flight performance, echolocation and foraging behaviour in pond bats, Myotis dasycneme (Chiroptera: Vespertilionidae). Journal of Zoology (London), 241: 503–522. Google Scholar
- 15. A. Brosset , and C. Delamare-Deboutteville . 1966. Le regime alimentaire du vespertilion de Daubenton Myotis daubentoni. Mammalia, 30: 247–51. Google Scholar
- 16. M. Ciechanowski , and A. Zapart . 2012. The diet of the pond bat Myotis dasycneme and its seasonal variation in a forested lakeland of northern Poland. Acta Chiropterologica, 14: 73–80. Google Scholar
- 17. E. L. Clare , E. E. Fraser , H. E. Braid , M. B. Fenton , and P. D. N. Hebert . 2009. Species on the menu of a generalist predator, the eastern red bat (Lasiurus borealis): using a molecular approach to detect arthropod prey. Molecular Ecology, 18: 2532–2542. Google Scholar
- 18. E. L. Clare , B. R. Barber , B. W. Sweeny , P. D. N. Hebert , and M. B. Fenton . 2010. Eating local: influences of habitat on the diet of little brown bats (Myotis lucifugus). Molecular Ecology, 20: 1772–1780. Google Scholar
- 19. J. H. Connell 1980. Diversity and the coevolution of competitors, or the ghost of competition past. Oikos, 35: 131–138. Google Scholar
- 20. P. S. Corbet 1964. Temporal patterns of emergence in aquatic insects. Canadian Entomologist, 96: 264–279. Google Scholar
- 21. F. Faul , E. Erdfelder , A.-G. Lang , and A. Buchner . 2007. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behaviour Research Methods, Instruments and Computers, 39: 175–191. Google Scholar
- 22. B. M. Fenton , and W. Bogdanowicz . 2002. Relationships between external morphology and foraging behaviour: bats in the genus Myotis. Canadian Journal of Zoology, 80: 1004–1013. Google Scholar
- 23. J. S. Findley 1993. Bats: a community perspective. Cambridge University Press, Cambridge, 167 pp. Google Scholar
- 24. D. Flavin , S. Biggane , C. B. Shiel , P. Smiddey , and J. S. Fairley . 2001. Analysis of the diet of Daubenton's bat Myotis daubentonii in Ireland. Acta Theriologica, 46: 43–52. Google Scholar
- 25. K. Funakoshi , and Y. Takeda . 1998. Food habits of sympatric insectivorous bats in southern Kyushu, Japan. Mammal Study, 23: 49–62. Google Scholar
- 26. M. Hickey , C. Brian , L. Acharya , and S. Pennington . 1996. Resource partitioning by two species of Vespertilionidae bats (Lasiurus cinereus and borealis) feeding around streets lights. Journal of Mammalogy, 77: 325–334. Google Scholar
- 27. G. Jones 1995a. Flight performance, echolocation and foraging behaviour in noctule bats Nyctalus noctula. Journal of Zoology (London), 237: 303–312. Google Scholar
- 28. G. Jones 1995b. Variation in bat echolocation: implications for resource partitioning and communication. Le Rhinolophe, 11: 53–59. Google Scholar
- 29. G. Jones 1999. Scaling of echolocation call parameters in bats. Journal of Experimental Biology, 202: 3359–3367. Google Scholar
- 30. G. Jones , and J. M. V. Rayner . 1988. Flight performance, foraging tactics and echolocation in free-living Daubenton's bats Myotis daubentonii (Chiroptera: Vespertilionidae). Journal of Zoology (London), 215: 113–132. Google Scholar
- 31. P. L. Jones , R. A. Page , M. Hartbauer , and B. M. Siemers . 2011. Behavioral evidence for eavesdropping on prey song in two Palearctic sibling bat species. Behavioral Ecology and Sociobiology, 6: 333–340. Google Scholar
- 32. E. K. V. Kalko , and H.-U. Schnitzler . 1989. The echolocation and hunting behavior of Daubenton's bat, Myotis daubentonii. Behavioral Ecology and Sociobiology, 24: 225–238. Google Scholar
- 33. E. K. V. Kalko , I. Kaipf , H.-U. Schnitzler , and A. D. Grinnell . 1998. Echolocation and foraging behavior of the lesser bulldog bat, Noctilio albiventris: preadaptations for piscivory? Behavioural Ecology and Sociobiology, 42: 305–319. Google Scholar
- 34. T. Kingston , G. Jones , A. Zubaid , and T. H. Kunz . 2000. Resource partitioning in rhinolophoid bats revisited. Oecologia, 124: 332–342. Google Scholar
- 35. T. H. Kunz , and J. O. Whitaker Jr . 1983. An evaluation of fecal analysis for determining food habits of insectivorous bats. Canadian Journal of Zoology, 61: 1317–1321. Google Scholar
- 36. Y. Lee , and G. F. McCracken . 2005. Dietary variation of Brazilian free-tailed bats links to migratory populations of pest insects. Journal of Mammalogy, 86: 67–76. Google Scholar
- 37. H. J. G. A. Limpens , P. H. C. Lina , and A. M. Hutson . 1999. Revised action plan for the conservation of the pond bat (Myotis dasycneme) in Europe. Report to the Council of Europe T-PVS (99) 2. Strasbourg. Google Scholar
- 38. R. H. Macarthur 1968. The theory of the niche. Pp. 159–176, in Population biology and evolution ( R. C. Lewontin , ed.). Syracuse University Press, Syracuse, 205 pp. Google Scholar
- 39. V. A. Matveev , S. V. Kruskop , and D. A. Kramerov . 2005. Revalidation of Myotis petax Hollister, 1912 and its new status in connection with M. daubentonii (Kuhl, 1817) (Vespertilionidae, Chiroptera). Acta Chiropterologica, 7: 23–37. Google Scholar
- 40. U. M. Norberg , and J. M. V. Rayner . 1987. Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philosophical Transaction of the Royal Society, 316B: 335–427. Google Scholar
- 41. J. Oksanen , R. Kindt , P. Legendre , B. O'hara , G. L. Simpson , P. Solymos , M. H. H. Stevens , and H. Wagner . 2010. Vegan: community ecology package. Available from http://cran.r-project.org/ and http://vegan.r-forge.r-project.org . Google Scholar
- 42. D. R. Oliver 1973. Life history of the Chironomidae. Annual Review of Entomology, 16: 211–230. Google Scholar
- 43. C. Orendt , S. Fiedler , B. Janecek , and F. Krüger . 2006. Untersuchung des Makrozoobenthos an zwölf schleswigholsteinischen Seen. Landesamt für Natur und Umwelt Schleswig-Holstein, Hamburger, 98 pp. Google Scholar
- 44. E. R. Pianka 1973. The structure of lizard communities. Annual Review of Ecology, Evolution and Systematics, 4: 53–74. Google Scholar
- 45. C. Poepperl 1999. Emergence pattern of Diptera in various sections of a Northern Germane lowland stream. Limnologica, 29: 128–136 Google Scholar
- 46. R. E. Ricklefs 1990. Ecology. Freeman, New York, 896 pp. Google Scholar
- 47. S. Robson 1984. Myotis adversus (Chiroptera: Vespertilionidae) — Australia's fish-eating bat. Australian Mammalogy, 7: 51–52. Google Scholar
- 48. M. Ruedi , and F. Mayer . 2001. Molecular systematics of bats of the genus Myotis (Vespertilionidae) suggests deterministic ecomorphological convergences. Molecular Phylogenetics and Evolution, 21: 436–448. Google Scholar
- 49. K. Safi , and B. M. Siemers . 2010. Implications of sensory ecology for species coexistence: biased perception links predator diversity to prey size distribution. Evolutionary Ecology Research, 24: 703–713. Google Scholar
- 50. H.-U. Schnitzler , and E. K. V. Kalko . 2001. Echolocation by insect-eating bats. BioScience, 51: 557–569. Google Scholar
- 51. T. W. Schoener 1968. The Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology, 49: 704–726. Google Scholar
- 52. T. W. Schoener 1974. Some methods for calculating competition coefficients from resource-utilization spectra. American Naturalist, 108: 332–340. Google Scholar
- 53. C. B. Shiel , C. M. Mcaney , C. Sullivan , and J. S. Fairley . 1997. Identification of arthropod fragments in bat droppings. Occasional Publication, The Mammal Society, London, 17: 1–56. Google Scholar
- 54. B. M. Siemers , and H.-U. Schnitzler . 2004. Echolocation signals reflect niche differentiation in five sympatric congeneric bat species. Nature, 429: 657–661. Google Scholar
- 55. B. M. Siemers , and S. M. Swift . 2006. Differences in sensory ecology contribute to resource partitioning in the bats Myotis bechsteinii and Myotis nattereri. Behavioral Ecology and Sociobiology, 59: 373–380. Google Scholar
- 56. B. M. Siemers , C. Dietz , D. Nill , and H.-U. Schnitzler . 2001a. Myotis daubentonii is able to catch small fish. Acta Chiropterologica, 3: 71–75. Google Scholar
- 57. B. M. Siemers , P. Stilz , and H.-U. Schnitzler . 2001b. The acoustic advantage of hunting at low heights above water: behavioural experiments on the European ‘trawling’ bats Myotis capaccinii, M. dasycneme and M. daubentonii. Journal of Experimental Biology, 204: 3843–3854. Google Scholar
- 58. B. M. Siemers , S. Greif , I. Borissov , S. L. Voigt-Heucke , and C. C. Voigt . 2011. Divergent trophic levels in two cryptic sibling bat species. Oecologia, 166: 69–78. Google Scholar
- 59. N. B. Simmons 2005. Order Chiroptera. Pp. 312–529, in Mammal species of the World: a taxonomic and geographic reference, 3rd edition ( D. E. Wilson and D. M. Reeder , eds.). Smithsonian Institution Press, Washington D.C., 2142 pp. Google Scholar
- 60. B. F. Simões , H. Rebelo , R. J. Lopes , P. C. Alves , and J. D. Harris . 2007. Patterns of genetic diversity within and between Myotis d. daubentonii and M. d. nathalinae derived from cytochrome b mtDNA sequence data. Acta Chiropterologica, 9: 379–389. Google Scholar
- 61. R. Sommer , and S. Sommer . 1997. Ergebnisse zur Kotanalyse von Teichfledermäusen (Myotis dasycneme). Myotis, 35: 103–107. Google Scholar
- 62. B. Stadelmann , D. S Jacobs , C. Schoemann , and M. Ruedi . 2004. Phylogeny of African Myotis bats inferred from cytochrome b sequences. Acta Chiropterologica, 6: 177–192 Google Scholar
- 63. C. M. Sullivan , C. B. Shiel , C. M. McAney , and J. S. Fairley . 1993. Analysis of the diets of Leisler's Nyctalus leisleri, Daubenton's Myotis daubentonii and pipistrelle Pipistrellus pipistrellus bats in Ireland. Journal of Zoology (London), 231: 656–663. Google Scholar
- 64. S. M. Swift , and P.A. Racey . 1983. Resource partioning in two species of versperilionid bats (Chiroptera) occupying the same roost. Journal of Zoology (London), 200: 249–259. Google Scholar
- 65. D. M. Syme , M. B. Fenton , and J. Zigouris . 2001. Roosts and food supplies ameliorate the impact of a bad summer on reproduction by the bat, Myotis lucifigus. Ecoscience, 8: 18–25. Google Scholar
- 66. K. H. Taake 1992. Strategien der Ressourcennutzung an Waldgewässern jagender Fledermäuse. Myotis, 30: 7–73. Google Scholar
- 67. M. Van De Sijpe 2004. Summer distribution of the pond bat Myotis dasycneme in the west of Flanders with regard to water quality. Mammalia, 68: 377–386. Google Scholar
- 68. N. Vaughan 1997. The diets of British bats (Chiroptera). Mammal Review, 27: 77–94. Google Scholar
- 69. L. Wallin 1961. Territorialism on the hunting ground of Myotis daubentonii. Säugetierkundliche Mitteilungen, 9: 156 – 159. Google Scholar
- 70. D. A. Waters , J. Rydell , and G. Jones . 1995. Echolocation call design and limits on prey size: a case study using the aerial-hawking bat Nyctalus leisleri. Behavioral Ecology and Sociobiology, 37: 321–328. Google Scholar
- 71. M. Weinbeer , and E. K. V. Kalko . 2007. Ecological niche and phylogeny: the highly complex echolocation behavior of the trawling long-legged bat, Macrophyllum macrophyllum. Behavioral Ecology and Sociobiology, 61: 1337–1348. Google Scholar
- 72. J. O. Whitaker Jr ., G. F. McCracken , and B. M. Siemers . 2009. Food habitat analysis of insectivorous bats. Pp. 567–592, in Ecological and behavioural methods for the study of bats ( T. H. Kunz and S. Parsons , eds.). The Johns Hopkins University Press, Baltimore, 901 pp. Google Scholar
- 73. M. R. K. Zeale , R. K. Butlin , G. L. A. Barker , D. C. Lees , and G. Jones . 2011. Taxon specific PCR for DNA barcoding arthropod prey in bat faeces. Molecular Ecology, 11:236–244. Google Scholar
- 74. A. F. Zuur , E. N. Ieno , and G. M. SMITH . 2007. Analysing ecological data. Springer, New York, 672 pp. Google Scholar
Uwagi
rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-b1718cdc-5e84-4136-906c-15bb22353cc0