Warianty tytułu
Języki publikacji
Abstrakty
A high coordination lattice discretization of protein conformational space is described. The model allows discrete representation of polypeptide chains of globular proteins and small macromolecular assemblies with an accuracy comparable to the accuracy of crystallographic structures. Knowledge based force Held, that consists of sequence specific short range interactions, cooperative model of hydrogen bond network and tertiary one body, two body and multibody interactions, is outlined and discussed. A model of stochastic dynamics for these protein models is also described. The proposed method enables moderate resolution tertiary structure prediction of simple and small globular proteins. Its applicability in structure prediction increases significantly when evolutionary information is exploited or/and when sparse experimental data are available. The model responds correctly to sequence mutations and could be used at early stages of a computer aided protein design and protein redesign. Computational speed, associated with the discrete structure of the model, enables studies of the long time dynamics of polypeptides and proteins and quite detailed theoretical studies of thermodynamics of nontrivial protein models.
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.389-422,fig.
Twórcy
autor
- University of Warsaw, L.Pasteura 1, 02-093 Warsaw, Poland; E-mail: Kolinski@chem.uw.edu.pl
autor
Bibliografia
- 1. Creighton, T.E. (1990) Protein folding. Rio- ehem. J. 270, 131-146.
- 2. Creighton, T.E. (1993) Proteins: Structures and Molecular Properties. W.H. Freeman and Company, New York.
- 3. Davies, D.R. & Metzger, H. (1983) Structural basis of antibody function. Annu. Rev. Immunol. 1, 87-117.
- 4. Fersht, A. (1984) Enzyme Structure and Mechanism.. W.H. Freeman, New York.
- 5. Branden, C. & Tooze, J. (1991) Introduction to Protein Structure. Garland Publishing Inc., New York, London.
- 6. McKusick, V.A. (1991) Current trends in mapping human genes. FASER J. 5, 12-20.
- 7. Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F., Jr., Brice, M.D., Rodgers, J.R., Kennard, O., Simanouchi, T. & Tasumi, M. (1977) The protein data bank: A computer- based archival file for macromolecular structures. J. Mol. Riol. 112, 535-542.
- 8. PDB (1995) Quarterly Newsletter, No. 71, January 1995.
- 9. Haliwell, J.R. (1992) Macromolecular Crystallography. Cambridge University Press, Cambridge.
- 10. Doolittle, R.F. (1981) Similar amino acid sequences: Chance or common ancestry? Science 214, 149-159.
- 11. Wutrich, K. (1986) NMR of Proteins and Nucleic Acids. J. Wiley, New York.
- 12. Kaptein, R.t Boelens, R., Scheek, R.M. & van Gunsteren, W.F. (1988) Protein structures from NMR. Biochemistry 27, 5389-5395.
- 13. Clore, G.M., Robien, M.A. & Gronenbom, A.M. (1993) Exploring the limits of precision and accuracy of protein structures determined by nuclear magnetic resonance spectroscopy. J. Mol. Biol. 231, 82-102.
- 14. Wright, P.E., Dyson, H.J. & Lerner, R.A. (1988) Conformation of peptide fragments of proteins in aqueous solution: Implications for initiation of protein folding. Biochemistry 27, 7167-7175.
- 15. Brunger. A.T. & Karplus, M. (1991) Molecular dynamics simulations with experimental restraints. Acc. Chem. Res. 24, 54-61.
- 16. Meirovitch, H., Vasquez, M. & Scheraga, H.A. (1988) Stability of polypeptide conformational states. II. Folding of a polypeptide chain by the scanning simulation method, and calculation of the free energy of the statistical coil. Biopolymers 27, 1189-1204.
- 17. Meirovitch, H. & Meirovitch, E. (1996) New theoretical methodology for elucidating the solution structure of peptides from NMR data. 3. Solvation effects. J. Phys. Chem. 100, 5123-5133.
- 18. DeLisi. C. (1988) Computers in molecular biology: Current applications and emerging trends. Science 240, 47-52.
- 19. Karplus, M. & Petsko, G.A. (1990) Molecular dynamics simulations in biology. Nature 347, 631-639.
- 20. Skolnick, J. & Kolinski, A. (1997) Protein Modeling; in Encyclopedia of Computational Chemistry (Rauge Schleyer, P., Allinger, N.L.,Clark, T., Gasteiger, J., Kollman, P. A., Schae- fer, H.F. Ill, eds.) John Wiley & Sons, London, New York.
- 21. Brooks, C.L. III. (1993) Molecular simulations of peptide and protein unfolding: In quest of a molten globule. Curr. Opin. Struct. Biol. 3, 92-98.
- 22. Brooks, C.L. III., Karplus, M. & Pettitt, B.M. (1988) Protein: A theoretical perspective of dynamics, structure, and thermodynamics. Adv. Chem. Phys. 71, 1-259.
- 23. Bruccoleri, R.E. & Karplus, M. (1987) Prediction of the folding of short polypeptide segments by uniform conformational sampling. Biopolymers 26, 137-168.
- 24. Elber, R. & Karplus, M. (1987) Multiple conformational states of proteins: A molecular dynamics analysis of myoglobin. Science 235, 318-321.
- 25. Elofsson, A. & Nilsson, L. (1993) How consistent are molecular dynamics simulations? Comparing structure and dynamics in reduced and oxidized Escherichia, coli thiore- doxin. J. Mol. Biol. 223, 766-780.
- 26. Bryngelson, J.D., Onuchic, J.N., Socci, N.D. & Wolynes, P.G. (1995) Funnels, pathways and the energy landscape of protein folding: A synthesis. Proteins 21, 167-195.
- 27. Zwanzig, R., Szabo, A. & Bagchi, B. (1992) Levinthal's paradox. Proc. Natl. Acad. Sci. U.S.A. 89, 20-22.
- 28. Anfinsen, C.B. & Scheraga, H.A. (1975) Experimental and theoretical aspects of protein folding. Adv. Prot. Chem. 29, 205-300.
- 29. DeBolt, S. & Skolnick, J. (1996) Evaluation of atomic level mean force potentials via inverse folding and inverse refinement of protein structures: Atomic burial position and pair- wise nonbonded interactions. Protein Eng. 9, 637-655.
- 30. Levitt, M. & Warshel, A. (1975) Computer simulation of protein folding. Nature 253, 694-698.
- 31. Levitt, M. (1975) A simplified representation of protein conformations for rapid simulation of protein folding. J. Mol. Biol. 104, 59-107.
- 32. Kuntz, I.D., Grippen, G.M., Kollman, P.A. & Kimelman, D. (1976) Calculation of protein tertiary structure. J. Mol. Biol. 106,983-994.
- 33. Dill, K.A., Bromberg, S., Yue, K., Fiebig, K.M., Yee, D.P., Thomas, P.D. & Chan, H.S. (1995) Principles of protein folding — A perspective from simple exact models. Protein Sei. 4, 561-602.
- 34. Skolnick, J. & Kolinski, A. (1989) Computer simulations of globular protein folding and tertiary structure. Annu. Rev. Phys. Chem. 40, 207-235.
- 35. Levitt, M. (1991) Protein folding. Curr. Opin. Struct. Biol. 1, 224-229.
- 36. Kolinski, A., Milik, M., Rycombel, J. & Skolnick, J. (1995) A reduced model of short range interactions in polypeptide chains. J. Chem. Phys. 103, 4312-4323.
- 37. Karplus, M. & Shakhnovich, E. (1992) Thermodynamics of protein folding; in Protein Folding (Creighton, T.E., ed.) pp. 127-196, W.H. Freeman, New York.
- 38. Sali, A., Shakhnovich, E. & Karplus, M. (1994) Kinetics of protein folding. A lattice model study of the requirements for folding to the native state. J. Mol. Biol. 235,1614-1636.
- 39. Hagler, A.T. & Honig, B. (1978) On the formation of protein tertiary structure on a computer. Proc. Natl. Acad. Sei. U.S.A. 75, 554-558.
- 40. Covell, D.G. (1992) Folding protein a-carbon chains into compact forms by Monte Carlo methods. Proteins 14, 409-420.
- 41. Wilson, C. & Doniach, S. (1989) A computer model to dynamically simulated protein folding: Studies with crambin. Proteins 6, 193-209.
- 42. Grippen, G.M. (1991) Prediction of protein folding from amino acid sequence over discrete conformation spaces. Biochemistry 30, 4232-4237.
- 43. Sun, S. (1993) Reduced representation model of protein structure prediction: Statistical potential and genetic algorithms. Protein Sei. 2, 762-785.
- 44. Kolinski, A. & Skolnick, J. (1996) lattice Models of Protein Folding, Dynamics and Thermodynamics. R.G. Landes, Austin, Texas.
- 45. Kolinski, A., Skolnick, J. & Yaris, R. (1986) The collapse transition of semiflexible polymers. A Monte Carlo simulation of a model system. J. Chem. Phys. 85, 3585-3597.
- 46. Kolinski, A., Skolnick, J. & Yaris, R. (1987) Monte Carlo studies on equilibrium globular protein folding. I. Homopolymeric lattice models of ß-barrel proteins. Biopolymers 26, 937-962.
- 47. Chan, II.S. & Dill, K.A. (1989) Compact polymers. Macromolecules 22, 4559—4573.
- 48. Chan, H.S. & Dill, K.A. (1991) "Sequence space soup" of proteins and copolymers. J. Chem. Phys. 95, 3775-3787.
- 49. Chan, H.S. & Dill, K.A. (1990) Origins of structure in globular proteins. Pnx:. Natl. Acad. Sei. U.S.A. 87, 638S-6392.
- 50. Skolnick. J.. Kolinski, A. & Yaris, R. (1988) Monte Carlo simulations of the folding of (5-barrel globular proteins. Proc. Natl. Acad. Sei. U.S.A. 85, 5057-6063.
- 51. Skolnick, J., Kolinski, A. & Yaris, R. (1989) Monte Carlo studies on equilibrium globular protein folding. II. ß-Barrel globular protein models. Biopolymers 28, 1059-1095.
- 52. Skolnick, J., Kolinski, A. & Yaris, R. (1989) Dynamic Monte Carlo study of a six stranded Greek key globular protein. Proc. Natl. Acad. Sei. U.S.A. 86, 1229-1233.
- 53. Skolnick, J., Kolinski, A. & Sikorski, A. (1990) Dynamic Monte Carlo simulations of globular protein and structure. Chemical Design Automation News 5, 1-20.
- 54. Sikorski, A. & Skolnick, J. (1989) Monte Carlo studies on equilibrium globular protein folding. III. The four helix bundle. Biopolymers 28, 1097-1113.
- 55. Sikorski, A. & Skolnick, J. (1989) Monte Carlo simulation of equilibrium globular protein folding. a-Helical bundles with long loops. Proc. Natl. Acad. Sei. U.S.A. 86, 2668-2672.Sikorski, A. & Skolnick, J. (1990) Dynamic Monte Carlo simulations of globular protein folding/unfolding pathways. II. a-Helical motifs. J. Mol. Biol 212, 819-836.
- 56. Sikorski. A. & Skolnick, J. (1990) Dynamic Monte Carlo simulations of globular protein folding model studies of in vivo assembly of four helix bundles and four member f3-barrels. J. Mol. Biol. 215, 183-198.
- 57. Dill, K.A. (1993) Folding Proteins: Finding a needle in a haystack. Curr. Biol. 3, 99-103.
- 58. Sali, A., Shakhnovich, E. & Karplus, M. (1994) How does a protein fold? Nature 369, 248-251.
- 59. Shakhnovich, E.I. & Finkelstein, A.V. (1989) Theory of cooperative transitions in protein molecules. I. Why denaturation of globular protein is a first-order phase transition. Biopolymers 28, 1667-1680.
- 60. Shakhnovich, E.I. & Gutin, A.M. (1989) Formation of unique structure in a polypeptide chain. Biophys. Chem. 34, 187-199.
- 61. Shakhnovich, E., Farztdinov, G. & Gutin, A.M. (1991) Protein folding bottlenecks: A lattice Monte Carlo simulation. Phys. Rev. Lett. 67, 1665-1668.
- 62. Shakhnovich, E.I. & Gutin, A.M. (1993) Engineering of stable and fast-folding sequences of model proteins. Proc. Natl. Acad. Sci. U.S.A. 90, 7195-7199.
- 63. Shakhnovich, E.I. (1994) Proteins with selected sequences fold into unique native conformations. Phys. Rev. Lett. 72, 3907-3910.
- 64. Socci, N.D. & Onuchic, J.N. (1994) Folding kinetics of protein-like heteropolymers. J. Chem. Phys. 100, 1519-1528.
- 65. Lau, K.F. & Dill, K.A. (1989) A lattice statistical mechanics model of the conformational and sequence space of proteins. Macromole- cules 22, 3986-3997.
- 66. Brower, R.C., Vasmatiz, G., Silverman, M. & DeLisi, C. (1993) Exhaustive conformational search and simulated annealing for models of lattice peptides. Biopolymers 33, 329-334.
- 67. Camacho, C.J. &Thirumalai, D. (1993) Kinetics and thermodynamics of folding in model proteins. Proc. Natl. Acad. Sci. U.S.A. 90, 6369-6372.
- 68. Onuchic, J.N., Wolynes, P.G., Luthey- Schulten, Z. & Socci, N.D. (1995) Toward an outline of the topography of a realistic protein- folding funnel. Proc. Natl. Acad. Sci. U.S.A. 92, 2626-3630.
- 69. Kolinski, A., Milik, M. & Skolnick, J. (1991) Static and dynamic properties of a new lattice model of polypeptide chain. J. Chem. Phys. 94, 3978-3985.
- 70. Kolinski, A. & Skolnick, J. (1992) Discretized model of proteins. I. Monte Carlo study of cooperativity in homopolypeptides. J. Phys. Chem. 97, 9412-9426.
- 71. Kolinski, A., Godzik, A. & Skolnick, J. (1993) A general method for the prediction of the three dimensional structure and folding pathway of globular proteins. Application to designed helical proteins. J. Chem. Phys. 98, 7420-7433.
- 72. Kolinski, A. & Skolnick, J. (1994) Monte Carlo simulations of protein folding. I. lattice model and interaction scheme. Proteins 18, 338-352.
- 73. Kolinski, A. & Skolnick, J. (1994) Monte Carlo simulations of protein folding. II. Application to protein A, ROP, and crambin. Proteins 18, 353-366.
- 74. Kolinski, A., Galazka, W. & Skolnick, J. (1995) Computer design of idealized p-motifs. J. Chem. Phys. 103, 10286-10297.
- 75. Godzik, A., Kolinski, A. & Skolnick, J. (1993) Lattice representation of globular proteins: How good are they? J. Comput. Chem. 14, 1194-1202.
- 76. Rykunov, D.S., Reva, B.A. & Finkelstein, A.V. (1995) Accurate general method for lattice approximation of three-dimensional structure of a chain molecule. Proteins 22,100-109.
- 77. Kolinski, A., Galazka, W. & Skolnick. J. (1996) On the origin of the cooperativity of protein folding. Implications from model simulations. Proteins 26, 271-287.
- 79. Godzik, A., Kolinski, A. & Skolnick, J. (1995) Are proteins ideal mixtures of amino acids? Analysis of energy parameter sets. Protein Sei. 4,2107-2117.
- 80. Skolnick, J., Jaroszewski, L., Koliński, A. & Godzik, A. (1997) Derivation and testing of pair potentials for protein folding. Beyond the quasichemical approximation. Protein Eng. (in press).
- 81. Godzik, A., Skolnick, J. & Koliński, A. (1993) Regularities in interaction patterns of globular proteins. Protein Eng. 6, 801-810.
- 82. Milik, M., Koliński, A. & Skolnick, J. (1995) Neural network system for the evaluation of side chain packing in protein structures. Protein Eng. 8, 225-236.
- 83. Skolnick, J.t Koliński, A., Brooks, C.L. Ill, Godzik, A. & Rcy, A. (1993) A method for prediction of protein structure from sequence. Curr. Biol. 3, 414-423.
- 84. Godzik, A., Koliński, A. & Skolnick, J. (1993) De novo and inverse folding predictions of protein structure and dynamics. J. Comput. Aided Mol. Design 7, 397-438.
- 85. Vieth, M., Koliński, A., Brooks, C.L. III. & Skolnick, J. (1994) Prediction of the folding pathways and structure of the GCN4 leucine zipper. J. Mol. Biol. 237, 361-367.
- 86. Vieth, M., Koliński, A., Brooks, C.L. III. & Skolnick, J. (1995) Prediction of the quaternary structure of coiled coils. Application to mutants of the GCN4 leucine zipper. J. Mol. Biol. 251, 448-467.
- 87. Vieth, M., Koliński, A. & Skolnick, J. (1996) Method for prediction the state of association of discretized protein models. Application to leucine zippers. Biochemistry 35, 955-967.
- 88. Olszewski, K.A., Koliński, A. & Skolnick, J. (1996) Does a backwardly read sequence have a unique native state? Protein Eng. 9, 5-14.
- 89. Olszewski, K.A., Koliński, A. & Skolnick, J. (1996) Folding simulations and computer redesign of protein A three helix bundle motifs. Proteins 25, 286-299.
- 90. Ortiz, A.R., Hu, W.-P., Koliński, A. & Skolnick, J. (1997) Method for low resolution prediction of small protein tertiary structure. J. Mol. Graphics, (in press).
- 91. Fogolari, F., Esposito, G., Viglino, P. & Cat- tarinussi, S. (1996) Modeling of polypeptide chains as Ca chains, Cc* chains with Cp, and Ca chains with ellipsoidal lateral chains. Bio- phys. J. 70, 1183-1197.
- 92. Wallqvist, A. & Ullner, M. (1994) A simplified amino acid potential for use in structure prediction of proteins. Proteins 18, 267-289.
- 93. Miyazawa, S. & Jernigan, R.L. (1985) Estimation of effective interresidue contact energies from protein crystal structures: Quasi- chemical approximation. Macromolecules 18, 534-552.
- 94. Lee, B., Kurochkina, N. & Kang, H.S. (1996) Protein folding by a biased Monte Carlo procedure in the dihedral angle space. FASEB J. 10, 119-125.
- 95. Hoffmann, D. & Knapp, E.W. (1996) Polypeptide folding with off-lattice dynamics: The method. Eur. Biophys. J. 24, 387-403.
- 96. Honeycutt, J.D. & Thirumalai, D. (1990) Me- tastability of the folded states of globular proteins. Proc. Natl. Acad. Sci. U.S.A. 87, 3526-3529.
- 97. Garrett, D.G. & Kastella, K. (1992) New results on protein folding from simulated annealing. J. Am. Chem. Soc. 114, 6555- -6556.
- 98. Knapp, E.W. (1992) Long time dynamics of a polymer with rigid body monomer unit relating to a protein model: Comparison with the Rouse model. J. Comput. Chem. 13,793-798.
- 99. Rey, A. & Skolnick, J. (1991) Comparison of lattice Monte Carlo dynamics and Brownian dynamics folding pathways of a-helical hairpins. Chem. Phys. 158, 199-219.
- 100. Rey, A. & Skolnick, J. (1993) Computer modeling and folding of four-helix bundles. Proteins 16, 8-28.
- 101. Guo, Z. & Thirumalai, D. (1995) Kinetics of protein folding: Nucleation mechanism, time scales, and pathways. Biopolymers 36, 83- -102.
- 102. Zhou, Y., Hall, C.K. & Karplus, M. (1996) First-order disorder-to order transition in an isolated homopolymer model. Phys. Rev. Utt. 77, 2822-2825.
- 103. Hoffmann, D. & Knapp, E.W. (1996) Protein dynamics with off-lattice Monte Carlo moves. Phys. Rev. E 53, 4221-4224.
- 104. Rabow, A.A. & Scheraga, H.A. (1996) Improved genetic algorithm for protein folding problem by use of a Cartesian combination operator. Protein Sei. 5, 1800-1815.
- 105. Kolinski, A., Skolnick, J. & Yaris, R. (1987) Dynamic Monte Carlo study of the conformational properties of long flexible polymers. Macromolecules 20, 438-440.
- 106. Kolinski, A. & Skolnick, J. (1986) Monte Carlo simulations on an equilibrium globular protein folding model. Proc. Natl. Acad. Sei. U.S.A. 83, 7267-7271.
- 107.Skolnick, J. & Kolinski, A. (1989) Dynamic Monte Carlo simulations of globular protein folding/unfolding pathways. I. Six member, Greek key ß-barrels. J. Mol. Biol. 212, 787- -817.
- 108.Skolnick, J. & Kolinski, A. (1991) Dynamic Monte Carlo simulations of a new lattice model of globular protein folding, structure, and dynamics. J. Mol. Biol. 221, 499-531.
- 109. Hao, M.-H. & Scheraga, H.A. (1994) Monte Carlo simulations of a first-order transition for protein folding. J. Phys. Chem. 98, 4940—4948.
- 110. Hao, M.-H. & Scheraga, H.A. (1994) Statistical thermodynamics of protein folding: Sequence dependence. J. Phys. Chem. 98, 9882-9893.
- 111. Hao, M.-H. & Scheraga, H.A. (1995)Statistical thermodynamics of protein folding: Comparison of mean-field theory with Monte Carlo simulations. J. Chem. Phys. 102, 1334-1348.
- 112. O'Toole, E., Venkataramani, R. & Panagio- topoulous, A.Z. (1995) Simple lattice model of proteins directional bonding and structural solvent. AIChE J. 41, 954-958.
- 113. Galzitskaya, O.V. & Finkelstein. A.V. (1994) Folding of chains with random and edited sequences: Similarities and differences. Protein Eng. 8, 883-892.
- 114. Dinner, A.R., Sali, A. & Karplus, M. (1996) The folding mechanism of larger proteins: Role of native structure. Proc. Natl. Acad. Sei. U.S.A. 93, 8356-8361.
- 115. Chan, U.S. & Dill, K.A. (1994) Transition states and folding dynamics of proteins and heteropolymers. J. Chem. Phys 100, 9238- -9257.
- 116. OToole, E.M. & Panagiotopoulos, A.Z. (1992) Monte Carlo simulation of folding transitions of simple model proteins using a chain growth algorithm. J. Chem. Phys. 97, 8644- -8652.
- 117. Hao, M.-H. & Scheraga, H.A. (1996) How optimization of potential functions affects protein folding. Proc. Natl. Acad. Sci. U.S.A. 93, 4984-4989.
- 118.Socci, N.D., Onuchic, J.N. & Wolynes, P.G. (1996) Diffusive dynamics of the reaction coordinate for protein folding funnels. J. Chem. Phys. 104, 5860-5868.
- 119. Bryngelson, J.D. (1994) When is a potential accurate enough for structure prediction? Theory and application to a random hetero- polymer model of protein folding. J. Chem. Phys. 100, 6038-6045.
- 120. Li, H., Helling. R., Tang, C. & Wingreen, N. (1996) Emergence of preferred structures in a simple model of protein folding. Science 273, 666-669.
- 121. Beutler, T.C. & Dill, K.A. (1996) A fast conformational search strategy for finding low energy structures of model proteins. Protein Sci. 5, 2037-2043.
- 122. Hao, M.-H. & Scheraga, H.A. (1996 > Optimizing potential functions for protein folding. J. Phys. Chem. 100, 14540-14548.
- 123. Yue, K., Fiebig, K.M., Thomas, P.D., Chan, U.S., Shakhnovich, E.I. & Dill, K.A. (1995) A test of lattice protein folding algorithms. Proc. Natl. Acad. Sci. U.S.A. 92, 325-329.
- 124. Go, N. & Taketomi, H. (1978) Respective roles of short- and long-range interactions in protein folding. Proc. Natl. Acad. Sci. U.S.A. 75, 559-563.
- 125. Go, N., Abe, H., Mizuno, H. & Taketomi, H. (eds.) (1980) Protein Folding. Elsevier/ /North Holland, Amsterdam.
- 126. Taketomi, H., Kano, F. & Go, N. (1988) The effect of amino acid substitution on protein folding and unfolding transition studied by computer simulation. Biopolymers 27, 527- -559.
- 127. Taketomi, H., Ueda, Y. & Go, N. (1988) Studies of protein folding, unfolding and fluctuations by computer simulations. Int. J. Pept. Protein Res. 7, 445-149.
- 128. Ueda, Y., Taketomi, H. & Go, N. (1978) Studies on protein folding, unfolding, and fluctuations by computer simulation. II. A three-dimensional lattice model of lysozyme. Biopo- lymers 17, 1531-1548.
- 129. Krigbaum, W.R. & Lin, S.F. (1982) Monte Carlo simulation of protein folding using a lattice model. Macromolecules 15, 1135- -1145.
- 130. Dashevskii, V.G. (1980) Lattice model of three-dimensional structure of globular proteins. Molekulyarnaya Biologiya (Translation from Russian) 14, 105-117.
- 131.Covell, D.G. & Jernigan, R.L. (1990) Conformations of folded proteins in restricted spaces. Biochemistry 29, 3287-3294.
- 132. Hinds, DA. & Levitt, M. (1992) A lattice model for protein structure prediction at low resolution. Proc. Natl. Acad. Sci. U.S.A. 89, 2536-2540.
- 133. Skolnick, J. & Kolinski, A. (1990) Simulations of the folding of a globular protein. Science 250, 1121-1125.
- 134. Godzik, A., Skolnick, J. & Kolinski, A. (1992) Simulations of the folding pathway of TIM type cx/(i barrel proteins. Proc. Natl. Acad. Sci. U.S.A. 89, 2629-2633.
- 135. Rey, A. & Skolnick, J. (1992) Efficient algorithm for the reconstruction of a protein backbone from the a-carbon coordinates. J. Comput. Chem. 13, 443-456.
- 136. Milik, M., Kolinski, A. & Skolnick, J. (1997) An algorithm for rapid reconstruction of a protein backbone from alpha carbon coordinates. J. Comput. Chem. 18, 80-85.
- 137.Orwoll, R.A. & Stockmayer, W.H. (1969) Stochastic models for chain dynamics. Adv. Chem. Phys. 15, 305-324.
- 138. Baumgartner, A. (1984) Simulation of polymer motion. Annu. Rev. Phys. Chem. 35, 419-435.
- 139. Kolinski, A., Skolnick, J. & Yaris, R. (1987) Does reptation describe the dynamics of entangled, finite length polymer system? A model simulation. J. Chem. Phys. 86, 1567- -1585.
- 140. Kolinski, A., Skolnick, J. & Yaris, R. (1987) Monte Carlo studies on the long time dynamic properties of dense cubic lattice mul- tichain systems. I. The homopolymeric melt. J. Chem. Phys. 86, 7164-7173.
- 141.Kolinski, A., Skolnick, J. & Yaris, R. (1987) Monte Carlo studies on the long time dynamic properties of dense cubic lattice multichain systems. II. Probe polymer in a matrix of different degrees of polymerization. J. Chem. Phys. 86, 7174-7180.
- 142.Skolnick, J. & Kolinski, A. (1990) Dynamics of dense polymer systems: Computer simulations and analytic theories. Adv. Chem. Physics 78, 223-278.
- 143. Metropolis, N., Rosenbluth, A.W., Rosen- bluth, M.N., Teller, A.H. & Teller, E. (1953) Equation of state calculations by fast computing machines. J. Chem. Phys. 51, 1087-1092.
- 144. Zwanzig, R. (1974) Theoretical basis for the Rouse-Zimm model in polymer solution dynamics. J. Chem. Phys. 60, 2717-2720.
- 145. Kyte, J. & Doolittle, R.F. (1982) A simple method for displaying the hydropathic character of protein. J. Mol. Riol. 157, 105-132.
- 146. Anfinsen, C.B. (1973) Principles that govern the folding of protein chains. Science 181, 223-230.
- 147. Finkelstein, A.V., Badretdinov, A.Y. & Gu- tin, A.M. (1996) Why do protein architecture have Boltzmann-like statistics? Proteins 23, 142-150.
- 148. Levitt, M. & Greer, J. (1977) Automatic identification of secondary structure in globular proteins. J. Mol. Biol. 114, 181-293.
- 149. Kabsch, W. & Sander, C. (1983) Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577-2637.
- 150. Abad-Zapatero, C. & Lin, C.T. (1990) Statistical descriptors for the size and shape of globular proteins. Biopolymers 29, 1745-1754.
- 151. Edelman, J. (1992) Pair distribution function in small systems: Implication for protein folding. Biopolymers 21, 3-10.
- 152. 152.Skolnick, J. & Kolinski, A. (1996) Monte Carlo lattice dynamics and prediction of protein folds; in Computer Simulations of Bio- molecular Systems. Theoretical and Experimental Studies (van Gunsteren, W.F., We- iner, P.K. & Wilkinson, A.J., eds.) ESCOM Science Publ., The Netherlands.
- 153. Godzik, A., Skolnick, J. & Kolinski, A. (1992) A topology fingerprint approach to the inverse folding problem. J. Mol. Biol 227, 227-238.
- 154. Host. B. & Sander. C. (1993) Prediction of secondary structure at better than 70% accuracy. J. Mol. Biol. 232, 584-599.
- 155. Rost, B. & Sander, C. (1994) Combining evolutionary information and neural networks to predict protein secondary structure. Proteins 19, 55-72.
- 156. Rost, B. & Sander. C. (1996) Progress of ID protein structure prediction at last. Proteins 23, 295-300.
- 157. Vieth. M., Kolinski, A., Skolnick, J. & Sikor- ski, A. (1992) Prediction of protein secondary structure by neural networks: Encoding short and long range patterns of amino acid packing. Acta Biochim. Polon. 39, 378-392.
- 158. Vieth. M. & Kolinski, A. (1991) Prediction of protein secondary structure by an enhanced neural network. Acta Biochim. Polon. 38, 335-351.
- 159. Handel, T. & DeGrado, W.F. (1992) A designed 4-helical bundle shows characteristics of both molten globule and native state. Biophysical J. 61, A265.
- 160. Raleigh, D P. & DeGrado, W.F. (1992) A De Novo designed protein shows a thermally induced transition from a native to a molten globule like state. J. Am. Chem. Soc. 114, 10079-10081.
- 161. Raleigh, D.P., Betz, S.F. & DeGrado, W.F. (1995) A de novo designed protein mimics the native state of natural proteins. J. Am. Chem. Soc. 117, 7558-7559.
- 162. Betz, S.F., Raleigh, D.P. & DeGrado, W.F. (1993) De novo protein design: From molten globules to native-like states. Curr. Opin. Struct. Biol. 3, 601-610.
- 163. Betz, S.F., Bryson, J.W. & DeGrado, W.F. (1995) Native-like and structurally characterized designed tx-helical bundles. Curr. Biol. 5, 457—463.
- 164. Sander, C. (ed.) (1986) Protein Design Exercises 86. EMBL, Heidelberg.
- 165. Banner. D.W., Kokkinidis, M. & Tsernoglou, D. (1987) Structure of the ColEl rop protein at 1.7 A resolution. J. Mol. Biol. 196, 657- -675.
- 166. Gouda, H., Torigoe, H., Saito, A., Sato, M., Arata, Y. & Schimada, I. (1992) Three-dimensional solution structure of the B-do- main of Staphylococcal Protein A: Comparisons of the solution and crystal structures. Biochemistry 40, 9665-9672.
- 167. Hendrickson, W.A. & Teeter, M.M. (1981) Structure of the hydrophobic protein cram- bin. Nature 290, 107-109.
- 168. Alber, T. (1992) Structure of the leucine zipper. Curr. Opin. Genet. Develop. 2, 205-210.
- 169. Harbury. P.B., Zhang, T., Kim, P.S. & Alber, T. (1993) A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science 262, 1401-1407.
- 170. Harbury, P.B., Kim, P.S. & Alber, T. (1994) Crystal structure of an isoleucine-zipper trimer. Nature 371, 80-83.
- 171. Brooks, B.R., Bruccoleri, R., Olafson, B., States, D., Swaminathan, S. & Karplus, M. (1983) CHARMM: A program for macro- molecular energy minimization, and molecular dynamics. J. Comp. Chem. 4, 187-217.
- 172.Skolnick, J., Kolinski, A. & Ortiz, A.R. (1997) MONSSTER: A method for folding globular proteins with a small number of distance restraints. J. Mol. Biol. 265, 217-241.
- 173.Gronenborn, A., Filpula, D.R., Essig, N.Z., Achari, A., Whitlow, M., Wingfield, P.T. & Clore, G.M. (1991) A novel, highly stable fold of the immunoglobulin binding domain of streptococcal protein G. Science 253, 657-660.
- 174.Leijonmarck, M. & Liljas, A. (1987) Structure of the C-terminal domain of ribosomal protein 17/L12 from Escherichia coli at 1.7 A resolution. J. Mol. Biol. 195, 555-579.
- 175.Guss, J.M. & Freeman, H.C. (1983) Structure of oxidized poplar plastocyanin at 1.6 A resolution. J. Mol. Biol. 169, 521-563.
- 176.Katti, S.K., LeMaster, D.M. & Eklund, H. (1990) Crystal structure of thioredoxin from Escherichia coli at 1.68 A resolution. J. Mol. Biol. 212, 167-184.
- 177.Smith, W.W., Burnett, R.M., Darling, G.D. & Ludwig, M.L. (1977) Structure of semiqui- none form offlavodoxin from Clostridium hp. Extension of 1.8 À resolution and some comparisons of the oxidized state. J. Mol. Biol. 117, 195-225.
- 178. Bolognesi, M., Onesti, S., Gatti, G., Coda, A., Ascenzi, P. & Brunori, M. (1989) Aplysia limacina myoglobin. Crystallographic analysis at 1.6 Â resolution. J. Mol. Biol. 205, 529-544.
- 179.Smith-Brown, M.J., Kominos, D. & Levy, R.M. (1993) Global folding of proteins using a limited number of distance restraints. Protein Eng. 6, 605-614.
- 180. Aszodi, A., Gradwell, M.J. & Taylor, W.R. (1995) Global fold determination from a small number of distance restraints. J. Mol. Biol. 251, 308-326.
- 181. Bowie, J.U., Luethy, R. & Eisenberg, D. (1991) A method to identify protein sequences that fold into a known three dimensional structure. Science 253, 164-170.
- 182.Jones, D.T., Taylor, W.R. & Thornton, J.M. (1992) A new approach to protein fold recognition. Nature 358, 86-89.
- 183. Luethy, R„ Bowie, J.U. & Eisenberg, D. (1992) Assessment of protein models with three dimensional profiles. Nature 356, 83-85.
- 184. Madej, T., Gibrat, J.F. & Bryant, S.H. (1995) Threading a database of protein scores. Proteins 23, 356-369.
- 185. Thornton, J.M., Flores, T P.. Jones, D.T. & Swindells, M.B. (1991) Prediction of progress at last. Nature 354, 105-106.
- 186. Thomas, D.J., Casari, G. & Sander, C. (1996) The prediction of protein contacts from multiple sequence alignments. Protein Eng. 9, 941-948.
- 187. Gobel, U., Sander, C., Schneider, R. & Valencia, A. (1994) Correlated mutations and residue contacts in proteins. Proteins 18, 309-317.
- 188. Kolinski, A., Skolnick, J. & Godzik, A. ( 1997) A method for the prediction of surface "TJn- turns and transglobular connections in small proteins. Proteins (in press).
- 189. Ponder, J.W. & Richards, F.M. (1987) Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. J. Mol. Biol. 193, 775-791.
- 190. Prędki, P.F. & Regan. L.R. (1995) Redesigning the topology of a four helix bundle protein: Monomeric Rop. Biochemistry 34, 9834-9839.
- 191. DeGrado, W.F., Wasserman, Z.R. & Lear, J.D. (1989) Protein design, a minimalist approach. Science 243, 622-628.
- 192. Skolnick, J., Kolinski, A. & Godzik, A. (1993) From independent modules to molten globules: Observations on the nature of protein folding intermediates. Proc. Natl. Acad. Sci. U.S.A. 90, 2099-2100.
- 193. Dyson, J.H. & Wright, P.E. (1993) Peptide conformation and protein folding. Curr. Biol. 3, 60-65.
- 194. Eliezer, D., Jennings, P.A., Wright, P.E.. Doniach, S., Hodgson, K.O. & Tsuruta, H. (1995) The radius of gyration of an apomyo- globin folding intermediate. Science 270, 487-488.
- 195. Kim, P. & Baldwin, R.L. (1990) Intermediates in the folding reactions of small proteins. Annu. Rev. Biochem. 59, 631-660.
- 196. Baldwin, R.L. & Roder, H. (1991) Characterizing protein folding intermediates. Curr. Riol. I, 219-220.
- 197. Lee, J. (1993) New Monte Carlo algorithm: Entropie sampling. Phys. Rev. Lett. 71, 211-214.
- 198. Berg, B.A. & Neuhaus, T. (1991) Multican- onical ensemble: A new approach to simulate first-order phase transitions. Phys. Rev. I^ett. 68, 9-12.
- 199. Hansmann, U.H.E. & Okamoto, Y. (1993) Prediction of peptide conformation by multi- canonical algorithm: New approach to the multiple minima problem.«/. Comput. Chem. 14, 1333-1338.
- 200. Kuwajima, K. (1989) The molten globule state as a clue for understanding the folding and cooperativity of globular protein structure. Proteins 6, 87-103.
- 201. Kuwąjima, K., Mitani. M. & Sugai, S. (1989) Characterization of the critical state in protein folding. Effects of guanidine hydrochloride and specific Ca2+ binding on the folding kinetics of <x-lactalbumin. J. Mol. Biol. 206, 547-561.
- 202. Ptitsyn, O.B. (1987) Protein folding: Hypotheses and experiments. J. Protein Chem. 6, 273-293.
- 203. Ptitsyn, O.B., Pain, R.H., Semisotnov, G.V., Zerovnik, E. & Razgulyaev, O.I. (1990) Evi- dence for a molten globule state as a general intermediate in protein folding. FEBS I^ett. 262, 20-24.
- 204.McQuarrie, A.D. (1976) Statistical Mechanics. Harper & Row, New York.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-fdc44fbd-5f00-41fb-8742-d4711010b78a