Warianty tytułu
Języki publikacji
Abstrakty
In this study the contribution of the ERK1/2 pathway to sphingosine-induced death and morphological changes of the actin cytoskeleton in glioma C6 cells was investigated. Surprisingly, the level of ERK1/2 phosphorylation does not change after incubation of cells with sphingosine. Despite this, sphingosine induces rounding and detachment of cells without formation of apoptotic bodies. To shed light on this process, a specific inhibitor of ERK1/2 phosphorylation, U0126, was used. Cells incubated simultaneously with sphingosine and U0126 not only detached, but also exhibited formation of apoptotic-like blebs. These data suggest that during sphingosine-induced glioma C6 cell death apoptotic blebbing is dependent on ERK1/2 signalling and occurs only when ERK1/2 activity is decreased or abolished.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.927-930,fig.,ref.
Twórcy
autor
- Nencki Institute of Experimental Biology, Warsaw, Poland
Bibliografia
- Amran D (2005) Biochim Biophys Acta 15: 269–279.
- Bhaskara VK, Panigrahi M, Challa S, Babu PP (2005) Neuropathology 25: 48–53.
- Boldt S, Weidle UH, Kolch W (2002) Carcinogenesis 23: 1831–1838.
- Burstein E, Duckett CS (2003) Curr Opin Cell Biol 15: 732–737.
- Chang SE, Kim KJ, Ro KH, Lim YJ, Choi JH, Moon KC, Sung KJ (2004) J Dermatol 31: 1–5.
- Cuvillier O (2002) Biochim Biophys Acta 1585: 153–162.
- Daido S, Kanzawa T, Yamamoto A, Takeuchi H, Kondo Y, Kondo S (2004) Cancer Res 64: 4286–4293.
- Dawson G, Goswami R, Kilkus J, Wiesner D, Dawson S (1998) Acta Biochim Polon 45: 287–297.
- Domnina LV, Ivanova OY, Pletjushkina OY, Fetisova EK, Chernyak B, Skulachev VP, Vasiliev JM (2004) Cell Biol Int 28: 471–475.
- Engelbrecht AM, Gebhardt S, Louw L (2005) Cancer Lett (available on line May 31).
- Fang JY, Richardson BC (2005) Lancet Oncol 6: 322–327.
- Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, Feeser WS, Van Dyk DE, Pitts WJ, Earl RA, Hobbs F, Copeland RA, Magolda RL, Scherle PA, Trzaskos JM (1998) J Biol Chem 273: 18623–18632.
- Freeman SM (2004) Drug News Perspect 17: 237–242.
- Green DR (1998) Cell 94: 695–698.
- Harada J, Foley M, Moskowitz MA, Waeber C (2004) J Neurochem 88: 1026–1039.
- Kerr JFR, Wyllie AH, Currie AR (1972) Br J Cancer 26: 239–257.
- Lockman K, Hinson JS, Medlin MD, Morris D, Taylor JM, Mack CP (2004) J Biol Chem 279: 42422–42430.
- Mengubas K, Riordan FA, Bravery CA, Lewin J, Owens DL, Mehta AB, Hoffrand AV, Wickremasinghe RG (1999) Oncogene 18: 2499–2506.
- Miller F, Kaplan DR (2001) Cell Mol Life Sci 58: 1045–1053.
- Pascual M, Valles SL, Renau-Piqueras J, Guerri C (2003) J Neurochem 87: 1535–1545.
- Pebay A, Toutant M, Premont J, Calvo CF, Venance L, Cordier J, Glowinski J, Tence M (2001) Eur J Neurosc 13: 2067–2076.
- Spiegel S, Cuvillier O, Edsall LC, Kohama T, Menzeleev R, Olah Z, Olivera A, Pirianov G, Thomas DM, Tu Z, Van Brocklyn JR, Wang F (1998) Ann N Y Acad Sci 845: 11–18.
- Stoica BA, Movsesyan VA, Lea PM, Faden AI (2003) Mol Cell Neurosci 22: 365–382.
- Sweeney EA, Sakakura C, Shirahama T, Masamune A, Ohta H, Hakomori S, Igarashi Y (1996) Int J Cancer 66: 358–366.
- Van Brocklyn JR, Tu Z, Edsall LC, Schmidt RR, Spiegel S (1999) J Biol Chem 274: 4626–4632.
- Wajant H, Pfizenmaier K, Scheurich P (2003) Cytokine Growth Factor Rev 14: 53–66.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-fcda0b59-afe2-44d6-aa2f-6b004ffb895d