Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2001 | 60 | 4 | 259-280
Tytuł artykułu

The amygdaloid complex of the rabbit - morphological and histochemical study

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the present paper is to describe the morphology and topography of the nuclei of the amygdaloid complex in the rabbit. In the current study we also investigated the intensity of the enzymatic reaction for acetylcholinesterase (AChE) in the amygdaloid complex and the morphology of its neurones. Material consisted of 5 brains of adult New Zealand rabbit, stained either with cresyl violet or for AChE activity. Although, as in other mammals, the rabbit amygdala consists of two main nuclear groups (corticomedial and basolateral), it reveals a peculiar morphology pattern, forming a transition structure between those observed in the cat and rat. Especially characteristic is the arrangement of the basolateral complex. Within that the ventromedial division of the lateral nucleus seems to be the largest, while its dorsolateral division — the smallest. The arrangement of the corticomedial complex in the rabbit is similar to both the cat and rat. In the rabbit the highest acetylcholinesterase activity is found in the basolateral nucleus and the nucleus of the lateral olfactory tract. The lowest AChE staining is observed in the cortical and medial nuclei, amygdalohippocampal and anterior amygdaloid areas and intercalated masses.
Słowa kluczowe
Wydawca
-
Czasopismo
Rocznik
Tom
60
Numer
4
Strony
259-280
Opis fizyczny
p.259-280,fig.,ref.
Twórcy
  • Medical University of Gdansk, Debinki 1, 80-210 Gdansk, Poland
autor
autor
autor
autor
Bibliografia
  • 1. Aggleton JP (1985) A description of intra-amygdaloid connections in old world monkey. Exp Brain Res, 57: 390–399.
  • 2. Aggleton JP (1986) A description of the amygdalo-hippocampal interconnections in the macaque monkey. Exp Brain Res, 64: 515–526.
  • 3. Ben-Ari Y, Zigmond RE, Shute CCD, Lewis PR (1977) Regional distribution of choline acetyltransferase and acetylcholinesterase within the amygdaloid complex and stria terminalis system. Brain Res, 120: 435–445.
  • 4. Berdel B, Morys J, Maciejewska B, Narkiewicz O (1996) Acetylcholinesterase activity as a marker of maturation of the basolateral complex of the amygdaloid body in the rat. Int J Dev Neurosci, 14: 543–549.
  • 5. Brashear HR, Godec MS, Carlsen J (1988) The distribution of neuritic plaques and acetylcholinesterase staining in the amygdala in Alzheimer’s disease. Neurology, 38: 1694–1699.
  • 6. Cahill L, Haier RJ, White NS, Fallon J, Kilpatrick L, Lawrence C, Potkin SG, Alkire MT (2001) Sex-related difference in amygdala activity during emotionally influenced memory storage. Neurobiol Learn Mem, 75: 1–9.
  • 7. Cahill L, Vazdarjanova A, Setlow B (2000) The basolateral amygdala complex is involved with, but is not necessary for, rapid acquisition of Pavlovian ’fear conditioning’. Eur J Neurosci, 12: 3044–3050.
  • 8. Cahill L, Weinberger NM (1999) Is the amygdala a locus of “conditional fear”? Some questions and caveats. Neuron, 23: 227–228.
  • 9. Camps P, Cusack B, Mallender WD, El Achab R, Morral J, Munoz-Torrero D, Rosenberry TL (2000) Huprine X is a novel high-affinity inhibitor of acetylcholinesterase that is of interest for treatment of Alzheimer’s disease. Mol Pharmacol, 57: 409–417.
  • 10. Carlsen J (1989) New perspectives on the functional anatomical organization of the basolateral amygdala. Acta Neurol Scand Suppl, 122: 1–27.
  • 11. Coleman-Mesches K, McGaugh JL (1995) Muscimol injected into the right or left amygdaloid complex differentially affects retention performance following aversively motivated training. Brain Res, 676: 183–188.
  • 12. Crosby EC, Humphrey T (1941) Studies of the vertebrate telencephalon. II. The nuclear pattern of the anterior olfactory nucleus, tuberculum olfactorium and the amygdaloid complex in adult man. J Comp Neurol, 74: 309–352.
  • 13. Davis M (2000) The role of the amygdala in conditioned and unconditioned fear and anxiety. In: Aggleton JP (ed.). The amygdala, Vol. 2. Oxford University Press, Oxford, UK, pp. 213–287.
  • 14. de Olmos J, Alheid GF, Beltramino CA (1985) Amygdala. In: Paxinos G (ed.). The rat nervous system. Academic Press, Sydney, pp. 223–334.
  • 15. Dziewiatkowski J, Berdel B, Kowianski P, Kubasik-Juraniec J, Bobek-Billewicz B, Morys J (1998) The amygdaloid body of the rabbit — a morphometric study using image analyser. Folia Morphol (Warszawa), 57: 93–103.
  • 16. Emre M, Heckers S, Mash DC, Geula C, Mesulam M-M (1993) Cholinergic innervation of the amygdaloid complex in the human brain and its alterations in old age and Alzheimer’s disease. J Comp Neurol, 336: 117–134.
  • 17. Ferry B, Roozendaal B, McGaugh JL (1999) Role of norepinephrine in demiating stress hormone regulation of long-term memory storage: A critical involvement of the amygdala. Biol Psychiatry, 46: 1140–1152.
  • 18. Gerebtzoff MA (1953) Recherches histochemiques sur les acetylcholine et choline esterases. Acta Anat, 19: 366–379.
  • 19. Girgis M, Shih-Chang W (1981) Stereotaxic atlas of the rabbit brain, Warren H. Green, Inc., St Louis, Mi. pp. 1–70.
  • 20. Hall E (1972) The amygdala of the cat: A Golgi study. Z Zellforsch, 134: 439–458.
  • 21. Hall E, Geneser-Jensen FA (1971) Distribution of acetycholinesterase and monoamine oxidase in the amygdala of the guinea pig. Z Zellforsch, 120: 204–221.
  • 22. Howard MA, Cowell PE, Boucher J, Broks P, Mayes A, Farrant A, Roberts N (2000) Convergent neuroanatomical and behavioural evidence of an amygdala hypothesis of autism. Neuroreport, 11: 2931–2935.
  • 23. Humphrey T (1968) The development of the human amygdala during early embryonic life. J Comp Neurol, 132: 135–166.
  • 24. Humphrey T (1972) The development of the human amygdaloid complex. In: Eleftherion BE (ed.). The neurobiology of the amygdala. Plenum Press, New York, pp. 21–77.
  • 25. Johnston JB (1923) Further contributions to the study of the evolution of the forebrain. J Comp Neurol, 35: 337–481.
  • 26. Kapp BS, Schwaber JS, Driscoll PA (1985) Frontal cortex projections to the amygdaloid central nucleus in the rabbit. Neuroscience, 15: 327–346.
  • 27. Kemppainen S, Pitkänen A (2000) Distribution of parvalbumin, calretinin, and calbindin-D28k immunoreactivity in the rat amygdaloid complex and colocalization with gamma-aminobutyric acid. J Comp Neurol, 426: 441–467.
  • 28. Kosmal A, Malinowska M, Woznicka A (1997) Diversity of connections of the temporal neocortex with amygdaloid nucli in the dog (Canis familiaris). Acta Neurobiol Exp, 57: 289–314.
  • 29. Krettek JE, Price JL (1978) A description of the amygdaloid complex in the rat and cat with observations on intra-amygdaloid axonal connections. J Comp Neurol, 178: 255–280.
  • 30. LeDoux JE (2000) Emotion circuits in the brain. Ann Rev Neurosci, 23: 155–184.
  • 31. Magnus O, Lammers HJ (1956) The amygdaloid-nuclear complex. Folia Psychiat Neurol Neurochir Neerl, 59: 555–582.
  • 32. Maren S (1999) Long-term potentiation in the amygdala — a mechanism for emotional learning and memory. Trends Neurosci, 22: 561–567.
  • 33. Martina M, Royer S, Paré D (1999) Physiological properties of central medial and central lateral amygdala neurons. J Neurophysiol, 82: 1843–1854.
  • 34. McDonald AJ (1982) Cytoarchitecture of the central amygdaloid nucleus of the rat. J Comp Neurol, 208: 401–418.
  • 35. McDonald AJ (1984) Neuronal organization of the lateral and basolateral amygdaloid nuclei in the rat. J Comp Neurol, 222: 589–606.
  • 36. Mesulam M-M, Geula C (1988) Nucleus basalis (Ch4) and cortical cholinergic innervation in the human brain: observations based on the distribution of acetylcholinesterase and choline acetyltransferase. J Comp Neurol, 275: 216–240.
  • 37. Mesulam M-M, Geula C (1991) Acetylcholinesteraserich neurons of the human cerebral cortex: cytoarchitectonic and ontogenetic patterns of distribution. J Comp Neurol, 306: 193–220.
  • 38. Mesulam M-M, Geula C, Moran MA (1987) Anatomy of cholinesterase inhibition in Alzheimer’s disease: Effect of physostigmine and tetrahydroaminoacridine on plaques and tangles. Ann Neurol, 22: 683–691.
  • 39. Mesulam M-M, Mufsom EJ, Levey AI, Wainer BH (1984) Atlas of cholinergic neurons in the forebrain and upper brainstem of the macaque based on monoclonal choline acetyltransferase immunohistochemistry and acetylcholinesterase histochemistry. Neuroscience, 12: 669–686.
  • 40. Millhouse OE (1986) The intercalated cells of the amygdala. J Comp Neurol, 247: 246–271.
  • 41. Millhouse OE, DeOlmos J (1983) Neuronal configurations in lateral and basolateral amygdala. Neuroscience, 10: 1269–1300.
  • 42. Morys J (1996) The limbic system and emotions. Post Psychiat Neurol, 5: 1–13.
  • 43. Morys J, Berdel B, Jagalska-Majewska H, Luczynska A (1999) The basolateral amygdaloid complex — its development, morphology and functions. Folia Morphol (Warszawa), 58: 29–46.
  • 44. Murray EA (1991) Contributions of the amygdalar complex to behavior in macaque monkeys. Prog Brain Res, 87: 167–180.
  • 45. Nitecka L (1975) Comparative anatomic aspects of localization of acetylcholinesterase activity in the amygdaloid body. Folia Morphol (Warszawa), 34: 167–185.
  • 46. Nitecka L, Narkiewicz O (1976) Localization of acetylcholinesterase activity in the amygdaloid body of man. Acta Neurobiol Exp, 36: 333–352.
  • 47. Nitecka L, Narkiewicz O, Zawistowska H (1971) Acetylcholinesterase activity in the nuclei of the amygdaloid complex in the rat. Acta Neurobiol Exp, 31: 383–388.
  • 48. Nitecka L, Zawistowska H, Bialowas J (1973) Nuclei of the amygdaloid body in cats - structure and acetylcholinesterase activity. Folia Morphol (Warszawa), 23: 40–49.
  • 49. Pare D, Smith Y (1993) The intercalated cell masses project to the central and medial nuclei of the amygdala in cats. Neuroscience, 57: 1077–1090.
  • 50. Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Second Edition, Academic Press Inc., San Diego, CA, pp. 1–262.
  • 51. Pikkarainen M, Rönkkö S, Savander V, Insausti R, Pitkänen A (1999) Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the hippocampal formation in rat. J Comp Neurol, 403: 229–260.
  • 52. Pitkänen A, Amaral DG (1993) Distribution of calbindin-D(28K) immunoreactivity in the monkey temporal lobe: The amygdaloid complex. J Comp Neurol, 331: 199–224.
  • 53. Pitkänen A, Jolkkonen E, Kemppainen S (2000) Anatomic heterogeneity of the rat amygdaloid complex. Folia Morphol, 59: 1–23.
  • 54. Pitkänen A, Tuunanen J, Kälviäinen R, Partanen K, Salmenperä T (1998) Amygdala damage in experimental and human temporal lobe epilepsy. Epilepsy Res, 32: 233–253.
  • 55. Price JL, Russchen FT, Amaral DG (1987) Integrated systems of the CNS. The limbic region. II. The amygdaloid complex. In: Björklund A, Hokfelt T, Swanson LW (eds.). Handbook of chemical neuroanatomy. Elsevier, Amsterdam, pp. 279–388.
  • 56. Salomé N, Viltart O, Leman S, Sequeira H (2001) Activation of ventrolateral medullary neurons projecting to spinal autonomic areas after chemical stimulation of the central nucleus of amygdala: a neuroanatomical study in the rat. Brain Res, 890: 287–295.
  • 57. Shek JW, Wen GY, Wisniewski HM (1986) Atlas of the rabbit brain and spinal cord. Karger, Basel, pp. 1–235.
  • 58. Sims KS, Williams RS (1990) The human amygdaloid complex: a cytologic and histochemical atlas using Nissl, myelin, acetylcholinesterase and nicotinamide adenine dinucleotide phosphate diaphorase staining. Neuroscience, 36: 449–472.
  • 59. Smiley JF, Mesulam MM (1898) Cholinergic neurons of the nucleus basalis of Meynert receive cholinergic, catecholaminergic and GABAergic synapses: An electron microscopic investigation in the monkey. Neuroscience, 88: 241–255.
  • 60. Stoop R, Pralong E (2000) Functional connections and epileptic spread between hippocampus, entorhinal cortex and amygdala in a modified horizontal slice preparation of the rat brain. Eur J Neurosci, 12: 3651–3663.
  • 61. Svendsen CN, Bird ED (1985) Acetylcholinesterase staining of the human amygdala. Neurosci Lett, 54: 313–318.
  • 62. ten Donkelaar HJ, Lammers GJ, Gribnau AAM (1979) Neurogenesis in the amygdaloid nuclear complex in a rodent (the Chinese hamster). Brain Res, 165: 348–353.
  • 63. Tombol T, Szafranska-Kosmal A (1972) A Golgi study of the amygdaloid complex in the cat. Acta Neurobiol Exp, 32: 825–843.
  • 64. Turner BH (1981) The cortical sequence and terminal distribution of sensory related afferents to the amygdaloid complex of the rat and monkey. In: Ben-Ari Y (ed.). The amygdaloid complex. Elsevier/North-Holland Biomedical Press, Amsterdam, pp. 51–62.
  • 65. Uchida Y (1950) A contribution to the comparative anatomy of the amygdaloid nuclei in mammals, especially in rodents. Part I: rat and mouse. Folia Psychiat Neurol Jap, 4: 25–42.
  • 66. Uchida Y (1950) A contribution to the comparative anatomy of the amygdaloid nuclei in mammals, especially in rodents. Part II: guinea pig, rabbit and squirrel. Folia Psychiat Neurol Jap, 4: 91–107.
  • 67. Urban I, Richard P (1972) A stereotaxic atlas of the New Zealand rabbit’s brain, Charles C. Thomas Publisher. Springfield pp. 1–86.
  • 68. Van Elst LT, Woermann FG, Lemieux L, Trimble MR (1999) Amygdala enlargement in dysthymia — A volumetric study of patients with temporal lobe epilepsy. Biol Psychiatry, 46: 1614–1623.
  • 69. Vazdarjanova A, McGaugh JL (1999) Basolateral amygdala is involved in modulating consolidation of memory for classical fear conditioning. J Neurosci, 19: 6615–6622.
  • 70. Young MW (1936) The nuclear pattern and fiber connections of the non-cortical centers of the telencephalon of the rabbit (Lepus cuniculus). J Comp Neurol, 65: 295–401.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-facabf89-059c-48fa-8b30-48a3b1428d88
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.