Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 16 | 3 | 407-421
Tytuł artykułu

An influence of pyrite oxidation on generation of unique acidic pit water: a case study, Podwisniowka quarry, Holy Cross Mountains [south-central Poland]

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This report presents an assessment of pyrite weathering on the chemistry of water in the abandoned Podwiśniówka quarry of the Holy Cross Mountains (south-central Poland). This quarry did not operate for ore minerals, but for quartzites. The area of the pit pond enlarges each year generally as a result of an influx of spring snowmelt or heavy rainfall. The water examined reveals a very low pH, varying from 2.27 to 3.57 (with geometric mean value of 2.90), and unusual low concentrations of cations and anions, especially total Fe (2.7–24.0 mg·L⁻¹) and SO₄²⁻ (55–285 mg·L⁻¹). With regard to its chemistry, this pond is unique compared to similar sites in Poland and even throughout the world. The low pH and element concentrations are attributed to the specific mineralogy of ore and gangue minerals, as well as complex bacterially catalyzed geochemical processes that have encompassed pyrite oxidation and iron oxidation/hydrolysis reactions.
Wydawca
-
Rocznik
Tom
16
Numer
3
Strony
407-421
Opis fizyczny
p.407-421,fig.,ref.
Twórcy
  • Pedagogical University, 5 Checinska St., 25-020 Kielce, Poland
autor
autor
Bibliografia
  • 1. NORDSTROM D.K., ALPERS C.N., BALL J.W. Measurement of negative pH and extremely high metal concentrations in acid mine water from Iron Mountain, California. Geol. Soc. Am. Annual Meeting. Abstract and Programs 23 (5), A.383, 1991.
  • 2. NORDSTROM D.K., ALPERS C.N. Geochemistry of Acid Mine Waters. [In:] Plumlee G.S., Logsdon M.J. (eds.). The Environmental Geochemistry of Mineral Deposits, Part A. Processes, Techniques, and Health Issues. Soc. Econ. Geologists. Rev. in Econ. Geology 6A, pp.133-160, 1999.
  • 3. NORDSTROM D.K., ALPERS C.N., PTACEK C.J., BLOWERS D.W. Negative pH and Extremely Acid Mine Waters from Iron Mountain Superfund site, California. Environ. Sci. Technol. 34(2), 254, 2000.
  • 4. CHAPMAN M.M., JONES D.R., JUNG R.F. Processes controlling metal ion attenuation in acid mine drainage streams. Geochim. Cosmochim. Acta 47, 1957, 1983.
  • 5. KLEINMANN R.L.P. Acid mine drainage in the United States – Controlling the impact on streams and rivers. 4th World Congress on the Conservation of the Built and Natural Environments. University of Toronto, pp. 1-10, 1989.
  • 6. FERRIS F.G., TAZAKI K., FYFE W.S. Iron oxides in acid mine drainage environments and their associated bacteria. Chem. Geol. 74, 321, 1989.
  • 7. PRATT A.R., NESBITT H.W., MUIR I.J. Generation of acids from mine wastes: oxidative leaching of pyrrhotite in dilute H2SO4 solutions at pH 3.0. Geochim. Cosmochim. Acta 58, 5147, 1994.
  • 8. GOLDFARB R.J., NELSON S.W., TAYLOR C.D., D’ANGELO W.M., MEIER A.L. Acid-mine drainage associated with volcanogenic massive sulfide deposits, Prince William Sound, Alaska. [In:] Moore T.E., Dumoulin J.A. (eds.). Geologic studies in Alaska by the U.S. Geological Survey, 1994. U.S. Geol. Surv. Bull. 2152, 3, 1996.
  • 9. GARRELS R.M., THOMPSON M.E. Oxidation of pyrite in ferric sulfate solution. Am. J. Sci. 258, 57, 1960.
  • 10. WIERSMA C.L., RIMSTIDT J.D. Rates of reaction of pyrite and marcasite with ferric iron at pH 2. Geochim. Cosmochim. Acta 48, 85, 1984.
  • 11. MCKIBBEN M.A., BARNES A.L. Oxidation of pyrite in low temperature acidic solutions: rate laws and surface textures. Geochim. Cosmochim. Acta 50, 1509, 1986.
  • 12. MOSES C.O., NORDSTROM D.K., HERMAN J.S., MILLS A.L. Aqueous pyrite oxidation by dissolved oxygen and by ferric iron. Geochim. Cosmochim. Acta 51, 1561, 1987.
  • 13. BLOWES D.W., AL. T., LORTIE L., GOULD W.D., JAMBOR J.L. Microbiological, chemical, and mineralogical characterization of the Kidd Creek mine tailings impoundment, Timmins area, Ontario. Geomicrobiol. J. 13, 13, 1995.
  • 14. MILLS A.L. The Role of Bacteria in Environmental Geochemistry. [In:] Filipek L.H., Plumlee G.S. (eds.). The Environmental Geochemistry of Mineral Deposits, Part A. Processes, Techniques, and Health Issues. Soc. Econ. Geologists. Rev. in Econ. Geology 6B, pp. 125-132, 1999.
  • 15. NORDSTROM D.K., SOUTHAM G. Geomicrobiology of sulfide mineral oxidation. [In:] Banfield J.F., Nealson K.H. (eds.). Geomicrobiology – Interactions between Microbes and Minerals: Reviews in Mineralogy. Miner. Soc. Am., Washington, D.C. 35, pp. 361-390, 1997.
  • 16. BLOWES D.W., PTACEK C.J., JAMBOR J.L. Remediation and prevention of low-quality from tailings impoundments. [In:] Jambor J.L., Blowes D.W (eds.). The Environmental Geochemistry of Sulfide Mine-Wastes, Miner. Assoc. Canada, Short Course Notes 22, pp. 365-379, 1994.
  • 17. EVANGELOU V.P. Pyrite oxidation and its control. CRC Press, Boca Raton, Fla., 1995.
  • 18. PLUMLEE G.S., LOGSDON M.J. An Earth-System Science Toolkit for Environmentally Friendly Mineral Resource Development. [In:] Plumlee G.S., Logsdon M.J (eds.). The Environmental Geochemistry of Mineral Deposits, Part A. Processes, Techniques, and Health Issues. Soc. of Econ. Geologists. Rev. in Econ. Geology 6A, pp. 1-27, 1999.
  • 19. MALMSTRÖM M.E. GLEISNER M., HERBERT R.B. Element discharge from pyritic mine tailings at limited oxygen availability in column experiments. Appl. Geochem. 21, 184, 2006.
  • 20. JEZIERSKI P. Chemistry of groundwaters and their dynamics in the Rudawy Janowickie area (Sudetes). Doctor’s Thesis. Institute of Geological Sciences, University of Wrocław 2002 [In Polish].
  • 21. PLUTA I., HAŁAS S. Identification of mine waters from the Powstańców Śląskich and Niwka-Modrzejów Coal Mines of the Upper Silesian Coal Basin by 34S and 18O in sulphates. 8th Intern. Conf. Hydrogeochémia, June 24-25, Ostrava, Czech Republic, pp. 97, 2004.
  • 22. PARKHURST D.L., APELLO C.A.J. User’s guide to PHREE QC (version 2) – a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geol. Surv. Water-Resources Investigations Report 99-4259, pp. 312, 1999.
  • 23. WANTY R.B., MILLER W.R., BRIGGS P.H., McHUGH J.B. Geochemical Processes Controlling Uranium Mobility in Mine Drainages. [In:] Plumlee G.S., Logsdon M.J (eds.). The Environmental Geochemistry of Mineral Deposits, Part A. Processes, Techniques, and Health Issues. Soc. of Econ. Geologists. Rev. in Econ. Geology 6A, pp. 201-213, 1999.
  • 24. ORŁOWSKI S. Stratigraphy of the Cambrian System in the Holy Cross Mts. Geol. Quart. 32, 525, 1988.
  • 25. MIZERSKI W. Geotectonic evolution of the Holy Cross Mts in Central Europe. Biul. Państw. Inst. Geol. (Pol. Geol. Inst. Bull.) 327, 1, 1995.
  • 26. MIZERSKI W. Holy Cross Mountains in the Caledonian, Variscan and Alpine cycles – major problems, open questions. Prz. Geol. (Pol. Geol. Rev.) 52 (8/2), 774, 2004.
  • 27. KOWALCZEWSKI Z., DADLEZ R. Tectonics of the Cambrian in the Wiśniówka area (Holy Cross Mts, central Poland). Geol. Quart. 40, 23, 1996.
  • 28. PLUMLEE G.S., SMITH K.S., MONTOUR M.R., FICKLIN W.H., MOSIER E.L. Geologic Controls on the Composition of Natural Waters and Mine Waters Draining Diverse Mineral-Deposits Types. [In:] Filipek L.H., Plumlee G.S. (eds.). The Environmental Geochemistry of Mineral Deposits, Part A. Processes, Techniques, and Health Issues. Soc. Econ. Geologists.Rev. in Econ. Geology 6B, pp. 373-407, 1999.
  • 29. TARVAINEN T., SALMINEN R. FOREGS Geochemical Mapping Field and Laboratory Manual. Geologian tutkimuskeskus XX, 1, 1997.
  • 30. KOLKER A., NORDSTROM D.K. Occurrence and microdistribution of arsenic in pyrite. U.S. Geol. Surv. Website (http://wwwbrr.cr.usgs.gov /Arsenic/) 2001.
  • 31. RUNNELLS D.D., SHEPARD T.A., ANGINO E.E. Metals in water – Determining natural background concentrations in mineralized areas. Environ. Sci. Technol. 26, 2316, 1992.
  • 32. HARRIMAN R., BATTARBEE R.W., MONTEITH D.T. Effects of acidic deposition on aquatic ecosystems. [In:] Bell J.N.B., Treshow M. (eds.). Air Pollution and Plant Life. John Wiley and Sons, Chichester, pp. 295-308, 2002.
  • 33. PLUMLEE G.S. The Environmental Geology of Mineral Deposits. [In:] Plumlee G.S., Logsdon M.J. (eds.). The Environmental Geochemistry of Mineral Deposits, Part A. Processes, Techniques, and Health Issues. Soc. Econ. Geologists. Rev. in Econ. Geology 6A, pp. 71-116, 1999.
  • 34. SCHEMEL L.E., KIMBALL B.A., BENCALA K.E. Colloid formation and metal transport through two mixing zones affected by acid mine drainage near Silverton, Colorado. Appl.Geochem. 15, 1003, 2000.
  • 35. ZHANG W., SINGH P., PALING E., DELIDES S. Arsenic removal from contaminated water by natural iron ores. Min.Eng. 17, 517, 2004.
  • 36. LOWSO N R.T. Aqueous oxidation of pyrite by molecular oxygen. Chem. Rev. 82, 461, 1982.
  • 37. FICKLIN W.H., MOSIER E.L. Field Methods for Sampling and Analysis of Environmental Samples for Unstable and Selected Stable Constituents. [In:] Plumlee G.S., Logsdon M.J. (eds.). The Environmental Geochemistry of Mineral Deposits, Part A. Processes, Techniques, and Health Issues. Soc. Econ. Geologists. Rev. in Econ. Geology 6A, pp. 249-264, 1999.
  • 38. LEROUX N.W., MARSHALL V.M. Effect of light on Thiobacilli. [In:] Schwartz W. (ed.). Conference Bacterial Leaching, 1977. GB F, Verlag Chemie, Weinheim, pp. 21-35 1977.
  • 39. WAITE T.D., MOREL F.M.M. Photoreductive dissolution of colloidal iron oxides in natural waters. Environ. Sci. Technol. 18, 860, 1984.
  • 40. MCKNIGHT D.M., KIMBALL B.A., BENCALA K.E. Iron photoreduction and oxidation in an acidic mountain stream. Science 240, 637, 1988.
  • 41. PIISPANEN R., NYKYRI T. Acidification of groundwater in water-filled gravel pits – a new environmental and geomedical threat. Environ. Geochem. Health. 19 (3), 111, 1997.
  • 42. MONTERROSO C., MACÍAS F. Drainage waters affected by pyrite oxidation in a coal mine in Galicia (NW Spain): Composition and mineral stability. Sci. Total Environ. 216, 121, 1998.
  • 43. MILLER W.R., MCHUGH J.B. Calculations of Geochemical Baselines of Stream Waters in the Vicinity of Summitville, Colorado, Before Historic Underground Mining and Prior to Recent Open-Pit Mining. [In:] Filipek L.H., Plumlee G.S. (eds.). The Environmental Geochemistry of Mineral Deposits, Part A. Processes, Techniques, and Health Issues. Soc. Econ. Geologists. Rev. in Econ. Geology 6B, pp. 505-514. 1999.
  • 44. SMITH K.S. Metal Sorption on Mineral Surfaces: An Overview with Examples Relating to Mineral Deposits. [In:] Plumlee G.S., Logsdon M.J. (eds.). The Environmental Geochemistry of Mineral Deposits, Part A. Processes, Techniques, and Health Issues. Soc. Econ. Geologists. Rev. in Econ. Geology 6A, pp. 125–132. 1999.
  • 45. BALL J.W., NORDSTROM D.K. Final revised analyses of major and trace elements from acid mine waters in the Leviathan mine drainage basin, California and Nevada – October 1981 to October 1982. U.S. Geol. Surv. Water-Resources Investigations Report. 89-4138, pp. 151, 1989
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-f8f13500-3a38-47b9-ad2d-1b42d4567f26
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.