Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 58 | 2 |
Tytuł artykułu

Technological usability of tubers of genetically-modified potato

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the presented work the effects of 3-year own investigations relative to technological usability of potato tubers of parental cultivar and its genetically-modified clones were recapitulated. Potato tubers of cultivar Irga were transformed with viral genome sequences in order to improve their resistance to a necrotic strain of potato virus Y (PVYN) at the Institute of Biochemistry and Biophysics, Warsaw, and tubers of the transgenic clones were produced at the Plant Breeding and Acclimatisation Institute, Młochów, in 2000-2002. At the first stage, the variability of parameters characterizing raw material quality was determined. The characteristics of physical properties (size, shape, and mechanical resistance of tubers), microstructure, and content of main chemical constituents (starch, protein, ash, ascorbic acid, glycoalkaloids: α-solanine and α-chaconine) of 15 genetically-modified clones were investigated during three successive years. Tubers of these GM clones were next subjected to culinary processing (microwaving, cooking, and frying) and physico-chemical changes, which are decisive for texture formation and texture properties of end-use product, have been investigated and technological usability of GM potatoes was established. In this work, due to a considerable number of collected data, the final results were presented as means for modification group or, in two cases, as results relative to single clones representative for modification groups. Analysis of variability of physical and chemical parameters studied for the raw and heat-treated potato tubers enabled classifying Irga and its genetically-modified clones as similar, and did not allow distinguishing a clone of special usability for heat processing.
Wydawca
-
Rocznik
Tom
58
Numer
2
Opis fizyczny
p.199-210,fig.,ref.
Twórcy
autor
  • Polish Academy of Sciences, Tuwima 10, 10-747 Olsztyn, Poland
autor
autor
autor
autor
Bibliografia
  • 1. Agblor A., Scanlon M.G., Effects of blanching condition on the mechanical properties of French fry strips. Am. J. Potato Res., 1998, 75, 245–255.
  • 2. Aguilera J.M., Cadoche L., Lopez C., Gutierrez G., Microstructural changes of potato cells and starch granules heated in oil. Food Res. Int., 2001, 34, 939–947.
  • 3. Alvarez M.D., Canet W., Rheological characterisation of fresh and cooked potato tissue (cv. Monalisa). Eur. Food Res. Technol., 1998, 207, 44–65.
  • 4. Alvarez M.D., Canet W., Storage time effect on the rheology of refrigerated potato tissue (cv. Monalisa). Eur. Food Res. Technol., 2000, 212, 48–56.
  • 5. Alvarez M.D., Canet W., Effect of osmotic adjustment on the rheology of potato tissue. The use of discriminant analysis for interpretation. Eur. Food Res. Technol., 2002, 214, 83–90.
  • 6. Anzaldua-Morales A., Bourne M.C., Shomer I., Cultivar specific gravity and location in tuber affect puncture force of raw potatoes. J. Food Sci., 1992, 57, 1353–1356.
  • 7. Bajema R.W., Hyde G.M., Baritelle A.L., Temperature and strain rate effects on the dynamic failure properties of potato tuber tissue. Transaction of the ASAE, 1998, 41, 733–740.
  • 8. Baritelle A.L., Hyde G.M., Effect of tuber size on failure properties of potato tissue. Transactions of the ASAE, 1999, 42, 159–161.
  • 9. Bianco G., Schmitt-Kopplin P., Crescenzi A., Comes S., Kettrup A., Cataldi T.R.I., Evaluation of glycoalkaloids in tubers og genetically modified virus Y-resistant potato plants (var. Désirée) by non-aqueous capillary electrophoresis coupled with electrospray ionization mass spectroscopy (NACE-ESI-MS). Anal. Bioanal. Chem., 2003, 375, 799–804.
  • 10. Blahovec J., Esmir A.A.S., Precise study of cooked potato texture. J. Tex. Studies, 2001, 32, 165–184.
  • 11. Błaszczak W., Chrzanowska M., Fornal J., Zimnoch-Guzowska, E., Palacios M.C., Vacek J., Scanning electron microscopic investigation of different types of necroses in potato tubers. Food Contr., 2005, 16, 747–752.
  • 12. Błaszczak W., Sadowska J., Fornal J., Vacek J., Flis B., Zagórski‑Ostoja W., The influence of cooking and microwave heating on microstructure and mechanical properties of GM potato. Nahrung/Food, 2004, 48, 169–176.
  • 13. Burton W.G., The Potato. 1989, Longman Scientific & Technical, Harlow, UK, pp. 278–335.
  • 14. Cepl J., Vokal B., Effect of selected factors on the number of tubers of single cluster in potatoes. Rost. Vyr., 1996, 42, 433–439.
  • 15. Chachulska A.M., Chrzanowska M., Flis B., Krzymowska M., Lipska-Dwużnik A., Robaglia, C., Zagórski W., Potato and tobacco cultivars transformation towards potato virus Y resistance. Biotechnology, 1997, 4, 48–54.
  • 16. Cmunt P., Resistance of potato tuber to mechanical damage at divided harvest. Rost. Vyr., 1997, 43, 131–136.
  • 17. Costa R.M., Oliveira F.A.R., Modelling of kinetics of water loss during potato frying with a compartmental dynamic model. J. Food Eng., 1999, 41, 177–185.
  • 18. Dale M.F.B., Mackay G.R., Inheritance of table and processing quality. 1994, in: Potato Genetics (eds. J.E. Bradshaw, G.R. Mackay). CAB International, London, UK, pp. 285–306.
  • 19. Dao L., Friedman M., Chlorophyll, chlorogenic acid, glycoalkaloid, and protease inhibitor content of fresh and green potatoes. J. Agric. Food Chem., 1994, 42, 633–639.
  • 20. Davey M.W., van Montagu M., Inze D., Sanmartin M., Kanellis A., Smirnoff N., Benzie I.J.J., Stain J.J., Favell D., Fletcher J., L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J Sci. Food Agric., 2000, 80, 825–860.
  • 21. Edwards E.J., Cobb A.H., Effect of temperature on glycoalkaloid and chlorophyll accumulation in potatoes (Solanum tuberosum L. cv. King Edward) stored at low photon flux density, including preliminary modeling using an artificial neural network. J Agric. Food Chem., 1997, 45, 1032–1038.
  • 22. Edwards E.J., Saint R.E., Cobb A.H., Is there a link between greening and light-enhanced glycoalkaloid accumulation in potato (Solanum Tuberosum) tubers? J. Sci. Food Agric., 1998, 76, 327–333.
  • 23. Edwards E.J., Cobb A.H., The effect of prior storage on the potential of potato tubers (Solanum Tuberosum L) to accumulate glycoalkaloids and chlorophylls during light exposure, including artificial neural network modeling. J. Sci. Food Agric., 1999, 79, 1289–1297.
  • 24. El Sanhoty R., Abd El-Rahman A.A., Bögl K.W., Quality and safety evaluation of genetically modified potatoes Spunta with Cry V gene: compositional analysis, determination of some toxins, antinutrients compounds and feeding study in rats. Nahrung-Food, 2004, 48, 13–18.
  • 25. Finlay M., Dale B., Griffiths D.W., Todd D.T., Effect of genotype, environment, and Postharvest storage on the total ascorbate content of potato (Solanum Tuberosum) tubers. Agric. Food Chem., 2003, 51, 244–248.
  • 26. Finotti E., Bertone A., Vivanti V., Balance between nutrients and anti-nutrients in nine Italian potato cultivars. Food Chem., 2006, 99, 698–701.
  • 27. Flis B., Zimnoch-Guzowska E., Field performance of transgenic clones obtained from potato cv. Irga. J. Appl. Genetics, 2000, 81–90.
  • 28. Fornal J., Błaszczak W., Grundas S., Novel agricultural materials for food and feed. The transgenic crops: From cereals to potato. 2002, in Physical Methods in Agriculture: Approach to Precision and Quality (eds. J. Blahovec, M. Kutilek). Kluvert, London, pp. 281–310.
  • 29. Friedman M., Dao L., Distribution of glycoalkaloids in potato plants and commercial potato products. J. Agric. Food Chem., 1990, 40, 419–423.
  • 30. Friedman M., McDonald G.M., Potato glycoalkaloids: Chemistry, analysis, safety, and plant physiology. Crit. Rev. Plant Sci., 1997, 16, 55–132.
  • 31. Haase N.U., Weber L., Ascorbic acid losses during processing of French fries and potato chips. J. Food Eng., 2003, 56, 207–209.
  • 32. Han J.S., Kozukue N., Young K.S., Lee K.R., Friedman M., Distribution of ascorbic acid in potato tubers and in home-processed and commercial potato foods. J. Agric. Food Chem., 2004, 52, 6516–6521.
  • 33. Hepworth D.G., Bruce D.M., Measuring of deformation of cells within piece of compressed potato tuber tissue. Ann. Botany, 2000, 86, 287–292.
  • 34. Huang J., Hess W.M., Weber D.J., Purcell A.E., Huber C.S., Scanning electron microscopy: tissue characteristics and starch granule variations of potatoes after microwave and conductive heating. Food Structure, 1990, 9, 113–122.
  • 35. Konstankiewicz K., Pawlak K., Zdunek A., Influence of structural parameters of potato tuber cells on their mechanical properties. Int. Agrophysics, 2001, 4, 243–246.
  • 36. Laza M., Scanlon M.G., Mazza G., The effect of tuber pre-heating temperature and storage time on the mechanical properties of potatoes. Food Res. Int., 2001, 34, 659–667.
  • 37. Mathew R., Hyde G.M. Potato Impact damage Thresholds. Transaction of the ASAE,1997, 40, 705–709.
  • 38. Mohsenin N.N., Physical Properties of Plant and Animal Materials. 1970, Gordon and Breach Sci. Publ., NewYork-London‑Paris, pp. 51–66.
  • 39. Moledina K.H., Fedec P., Hadziyew D. Ooraikul B., Effect of pre-cooking in potato granule production by a freeze-thaw process. Potato Res., 1978, 21, 301–318.
  • 40. Mullins E., Milbourne D., Petti C., Doyle-Prestwich B.M., Maede C., Potato in the age of biotechnology. Trends Plant Sci., 2006, 11, 254–260.
  • 41. Novak W.K., Haslberger A.G., Substantial equivalence of antinutrients and inherent plant toxins in genetically modified novel foods. Food Chem. Tox., 2000, 38, 473–483.
  • 42. Nuss J., Hadziyev D., Effect of heat on molecular weight and charge of potato sap proteins. Can. Inst. Food Sci. Technol. J., 1980, 13, 80–86.
  • 43. Pęksa A., Gołubowska G., Rytel E., Lisińska G., Aniołowski K., Influence of harvest date on glycoalkaloids contents of three potato varieties. Food Chem., 2002, 78, 313–317.
  • 44. Pęksa A., Gołubowska G., Aniołowski K., Lisińska G., Rytel E., Changes of glycoalkaloids and nitrate contents during chip processing. Food Chem., 2006, 97, 151–156.
  • 45. Rastovski A., van Es A., Storage of Potatoes. 1981, Centre for Agricultural Publishing and Documentation, Vageningen, the Netherlands, pp. 18–72.
  • 46. Rogan G.R., Bookout J.T., Duncan D.R., Fuchs R.L., Lavrik P.B., Love S.L., Mueth M., Olson T., Owens E.D., Raymond P.J., Zalewski J., Compositional analysis of tubers from insect and virus resistant potato plants. J. Agric. Food Chem., 2000, 48, 5936–5945.
  • 47. Sadowska J., Fornal J., Vacek J., Jeliński T., Flis B., Characteristics of physical properties of genetically modified potatoes. I. Mass and geometric properties of tubers. Int. Agrophysics, 2004a, 18, 269–276.
  • 48. Sadowska J., Vacek J., Palacios M.C., Fornal J., Characteristics of physical properties of genetically modified potatoes. II. Mechanical resistance of tubers. Int. Agrophysics, 2004b, 18, 347–354.
  • 49. Sadowska J., Vacek J., Fornal J., Zagórski-Ostoja W., Effect of antiviral genetical modification on softening of potato tubers during cooking. Eur. Food Res. Technol., 2005, 221, 336–341.
  • 50. Sadowska J., Błaszczak W., Fornal J., Zimnoch-Guzowska E., Zagórski-Ostoja W., Texture and microstructure of fried strips of genetically modified potato. Pol. J. Food Nutr. Sci., 2006, 15/56, 169–176.
  • 51. Sadowska J., Budny J., Fornal J., Starch, protein, glycoalkaloids, and L-ascorbic acid content in tubers of genetically modified potato cv. Irga. Eur. Food Res. Technol., 2008, 227 (1), 232–241.
  • 52. Şengűl M., Keleş F., Keleş M.S., The effect of storage conditions (temperature, light, time) and variety on the glycoalkaloid content of potato tubers and sprouts. Food Contr., 2004, 15, 281–286.
  • 53. Solomon W.K., Jindal V.K., Comparison of mechanical tests for evaluating textural changes in potatoes during thermal softening. J. Tex. Stud., 2003, 33, 529–542.
  • 54. Tajner-Czopek A., Changes of pectic substances concentration in potatoes and French fries and the effect of these substances on the texture of the final product. Nahrung/Food, 2003, 47, 228–231.
  • 55. Thybo A.K., Martens H.J., Lyshede O.B., Texture and microstructure of steam cooked, vacuum packed potatoes. J. Food Sci., 1998, 4, 692–685.
  • 56. Thybo A. K., van den Berg F., Full uniaxial compression curves for predicting sensory texture quality of cooked potatoes. J. Tex. Stud., 2002, 33, 119–134.
  • 57. Truong V.D., Walter M.V. Hamann D.D., Relationship between instrumental and sensory parameters of cooked sweetpotato texture. J. Tex. Stud., 1997, 28, 163–185.
  • 58. Winiger F.A., Ludwig J.W., Methoden der Qualitätsbeurteilung bei Kartoffeln für den menlischen Konsum. Potato Res., 1974, 17, 434–465 (in German).
  • 59. Wurr D.C.E., Fellows J.R., Akehurst J.M., Hambidge A.J., Lynn J.R., The effect of cultural and environmental factors on potato seed tuber morphology and subsequent sprout and stem development. J. Agric. Sci., 2001, 136, 56–63.
  • 60. Wurr D.C.E., Hole C.C., Fellows J.R., Milling J., Lynn J.R., O’Brien P.J., The effect of some environmental factors on potato tuber numbers. Potato Res., 1997, 40, 297–306.
  • 61. Zdunek A., Umeda M., Influence of cell size and cell wall volume fraction on failure properties of potato and carrot tissue. J. Tex. Stud, 2005, 36, 25–34.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-f8c93c8a-b1b8-4711-8118-9f41d6b9429c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.