Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 50 | 3 | 301-310
Tytuł artykułu

Genome-wide identification of genes involved in tolerance to various environmental stresses in Saccharomyces cerevisiae

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
During fermentation, yeast cells are exposed to a number of stresses - such as high alcohol concentration, high osmotic pressure, and temperature fluctuation - so some overlap of mechanisms involved in the response to these stresses has been suggested. To identify the genes required for tolerance to alcohol (ethanol, methanol, and 1-propanol), heat, osmotic stress, and oxidative stress, we performed genome-wide screening by using 4828 yeast deletion mutants. Our screens identified 95, 54, 125, 178, 42, and 30 deletion mutants sensitive to ethanol, methanol, 1-propanol, heat, NaCl, and H₂O₂, respectively. These deleted genes were then classified based on their cellular functions, and cross-sensitivities between stresses were determined. A large number of genes involved in vacuolar H⁺ -ATPase (V-ATPase) function, cytoskeleton biogenesis, and cell wall integrity, were required for tolerance to alcohol, suggesting their protective role against alcohol stress. Our results revealed a partial overlap between genes required for alcohol tolerance and those required for thermotolerance. Genes involved in cell wall integrity and the actin cytoskeleton are required for both alcohol tolerance and thermotolerance, whereas the RNA polymerase II mediator complex seems to be specific to heat tolerance. However, no significant overlap of genes required for osmotic stress and oxidative stress with those required for other stresses was observed. Interestingly, although mitochondrial function is likely involved in tolerance to several stresses, it was found to be less important for thermotolerance. The genes identified in this study should be helpful for future research into the molecular mechanisms of stress response.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
50
Numer
3
Strony
301-310
Opis fizyczny
p.301-310,fig.,ref.
Twórcy
autor
  • Department of Biology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
  • Department of Biology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
  • Department of Biology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
  • Department of Biology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
autor
  • Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
autor
  • Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
autor
  • Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
Bibliografia
  • Aguilera A, Benitez T, 1985. Role of mitochondria in ethanol tolerance of Saccharomyces cerevisiae. Arch Microbiol 142: 389-392.
  • Alexandre H, Rousseaux I, Charpentier C, 1994a. Relationship between ethanol tolerance, lipid composition and plasma membrane fluidity in Saccharomyces cerevisiae and Kloeckera apiculata. FEMS Microbiol Lett 124: 17-22.
  • Alexandre H, Rousseaux I, Charpentier C, 1994b. Ethanol adaptation mechanisms in Saccharomyces cerevisiae. Biotechnol Appl Biochem 20:173-183.
  • Alexandre H, Ansanay-Galeote V, Dequin S, Blondin B, 2001. Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae. FEBS Lett 498: 98-103.
  • Arneborg N, Hoy CE, Jorgensen OB, 1995. The effect of ethanol and specific growth rate on the lipid content and composition of Saccharomyces cerevisiae grown anaerobically in a chemostat. Yeast 11: 953-959.
  • Bandy B, Davison AJ, 1990. Mitochondrial mutations may increase oxidative stress: implications for carcinogenesis and aging? Free Radic Biol Med 8: 523-539.
  • Boldogh IR, Nowakowski DW, Yang HC, Chung H, Karmon S, Royes P, Pon LA, 2003. A protein complex containing Mdm10p, Mdm12p, and Mmm1p, links mitochondrial membranes and DNA to the cytoskeleton-based segregation machinery. Mol Biol Cell 14: 4618-4627.
  • Bonawitz ND, Rodeheffer MS, Shadel G.S, 2006. Defective mitochondrial gene expression results in reactive oxygen species-mediated inhibition of respiration and reduction of yeast life span. Mol Cell Biol 26:4818-4829.
  • Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD, 1998. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14: 115-132.
  • Bukau B, Weissman J, Horwich A, 2006. Molecular chaperones and protein quality control. Cell 125: 443-451.
  • Cartwright CP, Veazey FJ, Rose AH, 1987. Effect of ethanol on activity of the plasma-membrane ATPase in, and accumulation of glycine by, Saccharomyces cerevisiae. J Gen Microbiol 133: 857-865.
  • Causton HC, Ren B, Koh SS, Harbison CT, Kanin E, Jennings EG, et al. 2001. Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell 12: 323-337.
  • Chen RE, Thorner J, 2007. Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1773: 1311-1340.
  • Costa V, Reis E, Quintanilha A, Moradas-Ferreira P, 1993. Acquisition of ethanol tolerance in Saccharomyces cerevisiae: the key role of the mitochondrial superoxide dismutase. Arch Biochem Biophys 300: 608-614.
  • Costa V, Amorim MA, Reis E, Quintanilha A, Moradas-Ferreira P, 1997. Mitochondrial superoxide dismutase is essential for ethanol tolerance of Saccharomyces cerevisiae in the postdiauxic phase. Microbiology 143: 1649-1656.
  • Costa V, Moradas-Ferreira P, 2001. Oxidative stress and signal transduction in Saccharomyces cerevisiae: insights into ageing, apoptosis and diseases. Mol Aspects Med 22: 217-246.
  • Delaunay A, Pflieger D, Barrault MB, Vinh J, Toledano MB, 2002. A thiol peroxidase is an H₂O₂ receptor and redox-transducer in gene activation. Cell 111: 471-481.
  • Elbein AD, Pan YT, Pastuszak I, Carroll D, 2003. New insights on trehalose: a multifunctional molecule. Glycobiology 13: 17-27.
  • Estruch F, 2000. Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol Rev 24: 469-486.
  • Forgac M, 1998. Structure, function andregulation of the vacuolar (H+)-ATPases. FEBS Lett 440: 258-263.
  • Fujita K, Matsuyama A, Kobayashi Y, Iwahashi H, 2004. Comprehensive gene expression analysis of the response to straight-chain alcohols in Saccharomyces cerevisiae, using cDNA microarray. J Appl Microbiol 97: 57-67.
  • Fujita K, Matsuyama A, Kobayashi Y, Iwahashi H, 2006. The genome-wide screening of yeast deletion mutants to identify the genes required for tolerance to ethanol and other alcohols. FEMS Yeast Res 6: 744-750.
  • Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, et al. 2000. Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11: 4241—4257.
  • Gustin MC, Albertyn J, Alexander M, Davenport K, 1998. MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol. Mol Biol Rev 62: 1264-1300.
  • Hohmann JE, 1997. Shaping up: the response of yeast to osmotic stress. In: Hohmann S, Mager WH, eds. Yeast stress responses. Heidelberg: Springer: 101-134.
  • Hohmann S, 2002. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66: 300-372.
  • Ibeas JI, Jimenez J, 1997. Mitochondrial DNA loss caused by ethanol in Saccharomyces flor yeasts. Appl Environ Microbiol 63: 7-12.
  • Ikner A, Shiozaki K, 2005. Yeast signaling pathways in the oxidative stress response. Mutat Res 569:13-27.
  • Ingram LO, Buttke TM, 1984. Effects of alcohols on micro-organisms. Adv Microb Physiol 25: 253-300.
  • Inoue T, Wang Y, Jefferies K, Qi J, Hinton A, Forgac M, 2005. Structure and regulation of the V-ATPases. J Bioenerg Biomembr 37: 393-398.
  • Jimeno S, Rondon AG, Luna R, Aguilera A, 2002. The yeast THO complex and mRNA export factors link RNA metabolism with transcription and genome instability. EMBO J 21: 3526-3535.
  • Jones RP, Greenfield PF, 1987. Ethanol and the fluidity of the yeast plasma membrane. Yeast 3: 223-232.
  • Kuge S, Jones N, Nomoto A, 1997. Regulation of yAP-1 nuclear localization in response to oxidative stress. EMBO J 16: 1710-1720.
  • Leao C, van Uden N, 1982. Effects of ethanol and other alkanols on the glucose transport system of the Saccharomyces cerevisiae. Biotech Bioeng 24: 2601-2604.
  • Liochev SI, Fridovich I, 2005. Cross-compartment protection by SOD1. Free Radie Biol Med 38: 146-147.
  • Lloyd D, Morrell S, Carlsen HN, Degn H, James PE, Rowlands CC, 1993. Effects of growth with ethanol on fermentation and membrane fluidity of Saccharomyces cerevisiae. Yeast 9: 825-833.
  • Martinez-Pastor MT, Marchler G, Schuller C, Marchler-Bauer A, Ruis H, Estruch F, 1996. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J 15: 2227-2235.
  • Monteiro G A, Sa-Correia I, 1998. In vivo activation of yeast plasma membrane H⁺ -ATPase by ethanol: effect on the kinetic parameters and involvement of the carboxyl-terminus regulatory domain. Biochim Biophys Acta 1370: 310-316.
  • Morano KA, Liu PC, Thiele DJ, 1998. Protein chaperones and the heat shock response in Saccharomyces cerevisiae. Curr Opin Microbiol 1 : 197-203.
  • Piper PW, 1995. The heat shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap. FEMS Microbiol Lett 134: 121-127.
  • Raitt DC, Johnson AL, Erkine AM, Makino K, Morgan B, Gross DS, Johnston LH, 2000. The Skn7 response regulator of Saccharomyces cerevisiae interacts with Hsf1 in vivo and is required for the induction of heat shock genes by oxidative stress. Mol Biol Cell 11: 2335-2347.
  • Rondon AG, Jimeno S, Garcia-Rubio M, Aguilera A, 2003. Molecular evidence that the eukaryotic THO/TREX complex is required for efficient transcription elongation. J Biol Chem 278: 39037-39043.
  • Rosa MF, Sa-Correia I, 1991. In vivo activation by ethanol of plasma membrane ATPase of Saccharomyces cerevisiae. Appl Environ Microbiol 57: 830-835.
  • Rosa MF, Sa-Correia I, 1996. Intracellular acidification does not account for inhibition of Saccharomyces cerevisiae growth in the presence of ethanol. FEMS Microbiol Lett 135: 271-274.
  • Salmon JM, Vincent O, Mauricio JC, Bely M, Barre P, 1993. Sugar transport inhibition and apparent loss of activity in Saccharomyces cerevisiae as a major limiting factor of enological fermentation. Am J Enol Viticult 44: 56-64.
  • Singer MA, Lindquist S, 1998. Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose. Trends Biotechnol 16: 460-468.
  • Tamas MJ, Rep M, Thevelein JM, Hohmann S, 2000. Stimulation of the yeast high osmolarity glycerol (HOG) pathway: evidence for a signal generated by a change in turgor rather than by water stress. FEBS Lett 472: 159-165.
  • Weber FJ, de Bont JA, 1996. Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochim Biophys Acta 1286: 225-245.
  • Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, et al. 1999. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285: 901-906.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-f83e4446-02db-4605-ab1f-a483ebee796a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.