Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 69 | 2 | 254-261
Tytuł artykułu

Event-related desynchronization and synchronization in evoked K-complexes

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
K-complexes - phenomena occurring in sleep EEG - pose severe challenges in terms of detection as well as finding their physiological origin. In this study, K-complexes (KCs) were evoked by auditory stimuli delivered during sleep. The use of evoked KCs enables testing the sleeping nervous system under good experimental control. This paradigm allowed us to adopt into the KC studies a method of signal analysis that provides time-frequency maps of statistically significant changes in signal energy density. Our results indicate that KCs and sleep spindles may be organized by a slow oscillation. Accordingly, KCs might be evoked only if the stimulus occurs in a certain phase of the slow oscillation. We also observed middle-latency evoked responses following auditory stimulation in the last sleep cycle. This effect was revealed only by the time-frequency maps and was not visible in standard averages.
Wydawca
-
Rocznik
Tom
69
Numer
2
Strony
254-261
Opis fizyczny
p.254-261,fig.,ref.
Twórcy
  • University of Warsaw, Warsaw, Poland
autor
Bibliografia
  • Achermann P, Borbely A (1997) Low-frequency (<1 Hz) oscillations in the human sleep electroencephalogram. Neurosci 81: 213-222.
  • Amzica F, Steriade M (1997) The K-complex: its slow (<1-Hz) rhythmicity and relation to delta waves. Neurology 49: 952-959.
  • Amzica F, Steriade M (2000) Integration of low-frequency sleep oscillations in corticothalamic networks. Acta Neurobiol Exp (Wars) 60: 229-245.
  • Bastien C, Campbell K (1992) The evoked K-complex: all-or-none phe-nomenon? Sleep 15: 236-245.
  • Benjamini Y, Yekutieli Y (2001) The control of the false discovery rate under dependency. Ann Stat 29: 1165­1188.
  • Borgmann C, Draganowa BRR, Panter C (2001) Human auditory middle latency responses: influence of stimulus type and intensity. Hear Res 158: 57-64.
  • Box GEP, Cox DR. (1964) An analysis of transformations. J Roy Stat Soc 2: 211-252.
  • Bremer G, Smith J, Karacan I (1970) Automatic detection of the K-Complex in sleep electroencephalograms. IEEE TransBiomed Eng 17: 314-323.
  • Campbell K, Rouillard L, Bastien C (1990) Component structure of the evoked K-complex. Sleep '90. Pontenagel Press, Bochum, DE. Colrain I (2005) The K-Complex: A 7-Decade History. Sleep 28: 255-273.
  • Conant J (2002) Tuxedo Park: A Wall Street Tycoon and the Secret Palace of Science that Changed the Course of World War II. Simon & Schuster, New York, NY Dawson GD (1954) A summation technique for the detection of small evoked potentials. Electroencephalogr Clin Neurophysiol 6: 65-84.
  • Destexhe A, Babloyantz A (1993) A model of the inward current Ih and its possible role in thalamocortical oscilla­tions. Neuroreport 4: 223-226.
  • Durka P, Żygierewicz J, Klekowicz H, Ginter J, Blinowska K (2004) On the statistical significance of event-related EEG desynchronization and synchronization in the time- frequency plane. IEEE TransBiomed Eng 51: 1167-1175.
  • Erwin R, Buchwald J (1986) Midlatency auditory evoked responses: differential effects of sleep in human. Electroencephalogr Clin Neurophysiol 65: 383-392.
  • Kamiński M, Żygierewicz J, Kuś R, Crone N (2005) Analysis of multichannel biomedical data. Acta Neurobiol Exp (Wars) 65: 443-452.
  • Kraus N, McGee T (1995) The middle latency response generating system. Electroencephalogr Clin Neurophysiol Suppl 44: 93-101.
  • Kraus N, Nicol T (2005) Brainstem origins for "what" and "where" pathways in the auditory system. Trends Neurosci 28: 176-181.
  • Loomis A, Harvey E, Hobart G (1938) Distribution of distur­bance patterns in the human electroencephalogram, with special reference to sleep. J Neurophysiol 13: 231-256.
  • Molle M, Marshall L, Gais S, Born J (2002) Grouping of spindle activity during slow oscillations in human non­rapid eye movement sleep. J Neurosci 22: 10941-10947.
  • Pfurtscheller G, Arnibar A (1979) Evaluation of event-relat­ed desynchronization (ERD) preceding and following voluntary self-paced movements. Electroencephalogr Clin Neurophysiol 46: 128-146.
  • Picton M, Hillyard S, Krausz H, Galambos R (1974) Human auditory evoked potentials. I: Evaluation of components. Electroencephalogr Clin Neurophysiol 36: 179-190.
  • Rechtschaffen A, Kales A (Eds.) (1968) A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages in Human Subjects. No. 204 in National Institutes of Health Publications. US Government Printing Office, Washington DC.
  • Steriade M, Amzica F (1998) Coalescence of sleep rhythms and their chronology in corticothalamic networks. Sleep Res Online 1: 1-10.
  • Steriade M, Deschenes M (1984) The thalamus as a neuronal oscillator. Brain Res 320: 1-63.
  • Ujszaszi J, Halasz P (1986) Late component variants of single auditory evoked responses during NREM sleep stage 2 in man. Electroencephalogr Clin Neurophysiol 64: 260-268.
  • Ujszaszi J, Halasz P (1988) Long latency evoked potential components in human slow wave sleep. Electroencephalogr Clin Neurophysiol 69: 516-522.
  • Żygierewicz J, Blinowska K, Durka P, Szelenberger W, Niemcewicz S, Androsiuk W (1999) High resolution study of sleep spindles. Clin Neurophysiol 110: 2136-2147.
  • Żygierewicz J, Durka P, Klekowicz H, Crone N, Franaszczuk P (2005) Computationally efficient approaches to calcu­lating significant ERD/ERS changes in the time-frequen­cy plane. J Neurosci Methods 145: 267-276.
  • Żygierewicz J, Suffczyński P, Blinowska K (2001) A model of sleep spindles generation. Neurocomp 38-40: 1619-1625.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-f0d42e20-7270-4cca-9cf6-798e5e27e2c2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.