Warianty tytułu
Języki publikacji
Abstrakty
The metal ion coordination abilities of reduced and oxidized glutathione are reviewed. Reduced glutathione (GSH) is a very versatile ligand, forming stable complexes with both hard and soft metal ions. Several general binding modes of GSH are described. Soft metal ions coordinate exclusively or primarily through thiol sulfur. Hard ones prefer the amino acid-like moiety of the glutamic acid residue. Several transition metal ions can additionally coordinate to the peptide nitrogen of the γ-Glu-Cys bond. Oxidized glutathione lacks the thiol function. Nevertheless, it proves to be a surprisingly efficient ligand for a range of metal ions, coordinating them primarily through the donors of the glutamic acid residue.
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.567-580,fig.
Bibliografia
- 1. Meister, A. & Anderson, M.E. (1983) Glutathione. Annu. Rev. Biochem. 52, 711-760.
- 2. Rabenstein, D.L. (1989) Metal complexes of glutathione and their biological significance; in Glutathione, Chapter V, pp. 147-186, New York.
- 3. Ballatori, N. (1994) Glutathione mercaptides as transport forms of metals. Adv. Pharm. 27, 271-296.
- 4. Bartosz, G. (1995,) The second face of oxygen. Warszawa, PWN (in Polish).
- 5. Bellomo, G., Vairetti, M., Stivala, L., Mira- belli, F., Richelmi, P. & Orrenius, S. (1992) Demonstration of nuclear compartmentali- zation of glutathione in hepatocytes. Proc. Natl Acad. Sci. U.S.A. 89, 4412-4416.
- 6. Munday, R. (1994) Bioactivation of thiols by one-electron oxidation. Adv. Pharm. 27, 237- 270.
- 7. Kasprzak, S.K. (1991) The role of oxidative damage in metal carcinogenicity. Chem. Res. Toxicol 4, 604-616.
- 8. Jacob, C., Maret, W. & Vallee, B.L. (1999) Selenium redox biochemistry of zinc-sulfur coordination sites in proteins and enzymes. Proc. Natl Acad. Sci. U.S.A. 96, 1910-1914.
- 9. Maret, W. (1994) Oxidative metal release from metallothionein via zinc-thiol/disulfide interchange. Proc. Nad. Acad. Sci U.S.A. 91, 237-241.
- 10. Savas, M.M., Shaw III, C.F. & Petering, D.H. (1993) The oxidation of rabbit liver metallo- thionein-II by 5,5'-dithiobis(2-nitrobenzoic acid) and glutathione disulfide. J. Inorg. Biochem. 52, 235-249.
- 11. Maret, W., Jacob, C., Vallee, B.L. & Fischer, E.H. (1999) Inhibitory sites in enzymes: Zinc removal and reactivation by thionein. Proc. Natl Acad. Sci. U.S.A. 96, 1936-1940.
- 12. Maret, W. & Vallee, B.L. (1998) Thiolate lig- ands in metallothionein confer redox activity on zinc clusters. Proc. Natl. Acad. Sci. U.S.A. 95, 3478-3482.
- 13. Jiang, L.J., Maret. W. & Vallee, B.L. (1998) The glutathione redox couple modulates zinc transfer from metallothionein to zinc-depleted sorbitol dehydrogenase. Proc. Natl. Acad. Sci. U.S.A. 95, 3483-3488.
- 14. Jacob, C.f Maret, W. & Vallee, B.L. (1998) Control of zinc transfer between thionein, metallothionein, and zinc proteins. Proc. Natl Acad. Sci. U.S.A. 95, 3489-3494.
- 15. Rabenstein, D.L. (1973) Nuclear magnetic resonance studies of the acid-base chemistry of amino acids and peptides. I. Microscopic ionization constants of glutathione and methyl- mercury-complexed glutathione. J. Am. Chem Soc. 95, 2797-2803.
- 16. Fujiwara, S., Formicka-Kozłowska, G. & Kozłowski, H. (1977) Conformational study of glutathione by NMR. Bull. Chem. Soc. Jap. 50, 3131-3135.
- 17. Varnagy, K. & Sovago, I. (1988) Transition metal complexes of amino acids and derivatives containing disulphide bridges. Inorg. Chim. Acta 151, 117-123.
- 18. Touche, M.L.D. & Williams, D.R. (1976) Thermodynamic considerations in co-ordination. Part XXV. Formation of ternary complexes containing two dissimilar metal ions and the implication for metal-metal stimulation phenomena in vivo. J. Chem. Soc. Dalton Trans. 1355-1359.
- 19. Corrie, A.M., Walker, M.D. & Williams, D.R. (1976) Thermodynamic considerations in coordination. Part XXII. Sequestering ligands for improving the treatment of plumbism and cadmiumism. J. Chem. Soc. Dalton Trans. 1012-1015.
- 20. Fuhr, J., Rabenstein. D.L. (1973) Nuclear magnetic resonance studies of the solution chemistry of metal complexes. IX. The binding of cadmium, zinc, lead, and mercury by glutathione. J. Am. Chem. Soc. 95, 6944-6950.
- 21. Hynes, M J. & O'Dowd, M. (1987) Interactions of the trimethyltin (IV) cation with carboxylic acids, amino acids, and related ligands. J. Chem. Soc. Dalton Trans. 563-566.
- 22. Bugarin, M.G. & Filolla, M. (1999) The formation constants of dimethylthallium (III>gluta- thione complexes in aqueous solution. J. Inorg. Biochem. 73, 17-29.
- 23. Li, Z.S., Lu, Y.P., Zhen, R.G., Szczypka, M., Thiele, D.J. & Rea, P.A. (1997) A new pathway for vacuolar cadmium sequestration in Sac- charomyces cerevisiae: YCFl-catalyzed transport of bis(glutathionato)cadmium. Proc. Natl Acad. Sci. U.S.A. 94, 42-47.
- 24. Kadima, W. & Rabenstein, D.L. (1990) Nuclear magnetic resonance studies of the solution chemistry of metal complexes. 26. Mixed ligand complexes of cadmium, nitrilotriacetic acid, glutathione, and related ligands. J. Inorg. Biochem. 38, 277-288.
- 25. Diaz-Cruz, M.S., Mendieta, J., Monjonell, A., Tauler, R. & Esteban, M. (1998) Study of the zinc-binding properties of glutathione by differential pulse polarography and multivariate curve resolution. J. Inorg. Biochem. 70, 91.
- 26. Dominey, L.A. & Kustin, K. (1983) Kinetics and mechanism of Zn(II) complexation with reduced glutathione. J. Inorg. Biochem. 18, 153-160.
- 27. Krężel, A. & Bal, W., reference in the text.
- 28. Gockel, P., Gelinsky, M., Vogler, R. & Vahren- kamp, H. (1998) Solution behaviour and zinc complexation of tripeptides with cysteine and/or histidine at both termini. Inorg. Chim. Acta 272, 115-124.
- 29. Krężel, A. & Bal, W. (1999) reference omitted.
- 30.Odenheimer, B. & Wolf, W. (1982) Reactions of cisplatin with sulfur-containing amino acids and peptides I. Cysteine and glutathione. Inorg. Chim. Acta 66, L41-L43.
- 31. Appleton, T.G., Connor, J.W., Hall, J.R. & Prenzler, P.D. (1989) NMR study of the reactions of cw-diamminediaquaplatinum(II) cation with glutathione and amino acids containing a thiol group. Inorg. Chem. 28,2030-2037.
- 32. Lempers, E.L.M. & Reedijk, J. (1990) Revere ibility of binding of cisplatin-methionine by diethyldithiocarbamate or thiourea: A study with model adducts. Inorg. Chem. 29, 217-222.
- 33. Berners-Price, S.J. & Kuchel, P.W. (1990) Reaction of cis- and ira/ia-iPtC^iNH^l with reduced glutathione studied by 13C, 195Pt and 15N-{1H} DEPT NMR. J. Inorg. Biochem. 38, 305-326.
- 34. Berners-Price, SJ. & Kuchel, P.W. (1990) Reaction of cis- and irans-fPtC^CNH^} with reduced glutathione inside human red blood cells, studies by lH and ^-^H} DEPT NMR. J. Inorg. Biochem. 38, 327-345.
- 35. Corden, B. (1987) Reaction of platinum(II) antitumor agents with sulfhydryl compounds and the implications for nephrotoxicity. Inorg. Chim. Acta 137, 125-130.
- 36.Sovago, I. & Martin, R.B. (1981) Transition metal ion induced deprotonation of amide hydrogenes in sulfhydryl containing compounds. J. Inorg. NucL Chem. 43, 425-429.
- 37. Chow, S.T., McAuliffe, C.A. & Sayle, B.J. (1975) Metal complexes of amino acids and de- rivatives-lX. Reactions of the tripeptide, glutathione, with divalent cobalt, nickel, copper and palladium salts. J. Inorg. NucL Chem. 37, 451-454.
- 38. Kozłowski, H., Decock-Le Reverend, B., Ficheux, D., Loucheux, C. & Sovago, I. (1987) Nickel(II) complexes with sulfhydryl containing peptides. Potentiometric and spectroscopic studies. J. Inorg. Biochem. 29, 187-197.
- 39. Letter, J.E., Jr. & Jordan, R.B. (1975) Com- plexing of Nickel(II) by cysteine, tyrosine and related ligands and evidence for zwitterion reactivity. J. Am. Chem. Soc. 97, 2381-2390.
- 40. Formicka-Kozłowska, G., May, P.M. & Williams, D.R. (1980) Potentiometric studies on nickel(II>glutathionate interactions. Inorg. Chim. Acta 46, L51-L53.
- 41. Jeżowska-Trzebiatowska, B., Jaruga-Baranow- ska, M., Ostern, M. & Kozłowski, H. (1981) Polarographic studies on Ni(II)-glutathione system in aqueous solutions. Polish J. Chem. 55, 2477-2483.
- 42. Jeżow8ka-Trzebiatow8ka, B., Formicka-Kozłowska, G. & Kozłowski, H. (1976) Metal- glutathione interaction in water solution. NMR and electron spectroscopy study of Ni(II>glutathione complexes in aqueous solution. Chem. Phys. Lett. 42, 242-245.
- 43.Ostern, M.I. & Jaruga-Baranowska, M. (1983) Complex structure and catalytic hydrogen ion reduction in Ni(II)-glutathione system. Electro- chim. Acta 28, 1173-1175.
- 44. Krężel, A. & Bal, W. (1999) reference omitted.
- 45. Li, W., Zhao, Y. & Chou, I.N. (19%) Mg2* anta- gonism on Ni -induced changes in microtubule assembly and cellular thiol homeostasis. Toxicol Appl Pharmacol. 136, 101-111.
- 46. Shi, X., Dalai, N.S. & Kasprzak, K.S. (1993) Generation of free radicals in reactions of Ni(II>thiol complexes with molecular oxygen and model lipid hydroperoxides. J. Inorg. Biochem. 50, 211-225.
- 47. Shi, X., Mao. Y., Ahmed, N. & Jiang, H. (1995) HPLC investigation on Ni(II>mediated DNA damage in the presence of i-butyl hydroperoxide and glutathione. J. Inorg. Biochem. 57, 91-102.
- 48. Ross, S.A. & Burrows, C.J. (1998) Nickel complexes of cysteine- and cystine-containing peptides: Spontaneous formation of disulfide- bridged dimers at neutral pH. Inorg. Chem. 37, 5358-5363.
- 49. Jeżowska-Trzebiatowska, B., Formicka-Koz- łowska, G. & Kozłowski, H. (1977) NMR and EPR study of the Cu(II>glutathione interaction in water solution. J. Inorg. NucL Chem. 39, 1265-1268.
- 50. Sivertsen, T. (1980) Copper-induced GSH depletion and methaemoglobin formation in vitro in erythrocytes of some domestic animals and man. A comparative study. Acta Pharmacol Toxicol. 46, 121-126.
- 51. Corazza, A., Harvey, I. & Sadler, P.J. (1996) 1H, 13C-NMR and X-ray absorption studies of copper(I) glutathione complexes. Eur. J. Biochem. 236, 697-705.
- 52. Harman, B. & Sovago, I. (1983) Metal complexes of sulphur-containing ligands. V. Interactions of cobalt(II) ion with L-cysteine and its derivatives. Inorg. Chim. Acta 80, 75-83.
- 53. Hamed, M.Y. & Silver, J. (1983) Studies on the reactions of ferric iron with glutathione and some related thiols. Part II. Complexes formation in the pH range three to seven. Inorg. Chim. Acta 80, 115-122.
- 54. Hamed, M.Y., Silver, J. & Wilson, M.T. (1983) Studies on the reactions of ferric iron with glutathione and some related thiols. Part III. A study of the iron catalyzed oxidation of glutathione by molecular oxygen. Inorg. Chim. Acta 80, 237-244.
- 55. Kitagawa, S., Seki, H., Kamentani, F. & Sakurai, H. (1988) EPR study on the interaction of hexavalent chromium with glutathione or cysteine: Production of pentavalent chromium and its stability. Inorg. Chim. Acta 152, 251-255.
- 56. Bose, R.N., Moghaddas, S. & Gelerinter, E. (1992) Long-lived chromium(IV) and chro- mium(V) metabolites in the chromium(VI> glutathione reaction: NMR, ESR, HPLC and kinetic characterization. Inorg. Chem. 31, 1987-1994.
- 57. Zhitkovich, A., Voitkun, V. & Costa, M. (1995) Glutathione and free amino acids form stable complexes with DNA following exposure of intact mammalian cells to chromate. Carcinogenesis 16, 907-913.
- 58. Cupo, D.Y. & Watterhahn, K.E. (1986) Modification of chromium(VI>induced DNA damage by glutathione and cytochromes P-450 in chicken embryo hepatocytes. Proc. Natl Acad. ScL U.S.A. 82, 6755-6759.
- 59. Formicka-Kozłowska, G., Kozłowski, H. & Jeżowska-Trzebiatowska, B. (1979) Metal- glutathione interaction in aqueous solution. Nickel(ID, cobaltGI), and coppeHII) complexes with oxidized glutathione. Acta Biochim. Polon. 26, 239-248.
- 60. Gillard, R.D. & Phipps, D.A. (1997) Optically active co-ordination compounds. Part XXI. The oxygenation of cobalt(II>tripeptide complexes. J. Am. Chem. Soc. 119, 1074-1082.
- 61. Kroneck, P. (1975) Models for the electron paramagnetic resonance nondetectable copper in "blue oxidases". A binuclear copper(II) complex with oxidized glutathione. J. Am Chem. Soc. 97, 3839-3841.
- 62. Miyoshi, K., Sugiura, Y., Ishizu, K., Iitaka, Y. & Nakamura, H. (1980) Crystal structure and spectroscopic properties of violet glutathione- copper(II) complex with axial sulfur coordination and two copper sites via a disulfide bridge. J. Am. Chem. Soc. 102, 6130-6136.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-effe3c0a-26fd-4291-b645-e046b9142f5d