Warianty tytułu
Języki publikacji
Abstrakty
A new low-cost glucoamylase preparation for liquefaction and saccharification of starchy raw materials in a one-stage system was developed and characterized. A non-purified biocatalyst with a glucoamylase activity of 3.11 U/mg, an α-amylase activity of 0.12 WU/mg and a protein content of 0.04 mg protein/mg was obtained from a shaken-flask culture of the strain Aspergillus niger C-IV-4. Factors influencing the enzymatic hydrolysis of starchy materials such as reaction time, temperature and enzyme and substrate concentration were standardized to maximize the yield of glucose syrup. Thus, a 90% conversion of 5% starch, a 67.5% conversion of 5% potato flour and a 55% conversion of 5% wheat flour to sweet syrups containing up to 87% glucose was reached in 3 h using 1.24 glucoamylase U/mg hydrolyzed substrate. The application of such glucoamylase preparation and a commercially immobilized glucose isomerase for the production of glucose-fructose syrup in a two-stage system resulted in high production of stable glucose/fructose blends with a fructose content of 50%. A high concentration of fructose in obtained sweet syrups was achieved when isomerization was perfonned both in a batch and repeated batch process.
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.141-148,fig.,ref.
Twórcy
autor
- Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
autor
autor
Bibliografia
- Abouzied, M.M. and A. Reddy 1986: Direct fermentation of potato starch to ethanol by co-cultures of Aspergillus niger and Saccharomyces cerevisiae. Appl. Environ. Microbiol., 52: 1055-1059.
- Bazaraa W.A. and M.K Hamdy. 1989. Fructose production by immobilized Arthrobacter cells. J. Ind. Microbiol. Biotechnol. 4: 267-274.
- Bazaraa W.A. and E.E. Hassan 1996. Response surface optimization for the continuous glucose isomerization process. J. Ind. Microbiol. Biotechnol. 17: 100-103.
- Bhosale S.H. Rao M.B. and V.V. Deshpande. 1996. Molecular and industrial aspects of glucose isomerase. Microbiol. Rev. 60: 280-300.
- Błaszków W. and T. Miśkiewicz. 1980. Utilization of starch as a substrate of immobilized enzymes: α-amylase, glucoamylase and glucose isomerase (in Polish). Przem. Ferm. Owocowo-Warzywny 24: 6-8.
- Bolach E., W. Leśniak and J. Ziobrowski. 1985. Starch hydrolysis in citric acid fennentation. Acta Alim. Pol. 11: 97-104.
- Bray G.A., S.J. Nielsen and B.M. Popkin. 2004. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am. J. Clin. Nutr. 79: 537-543.
- Crabb W.D. and J.K. Shetty. 1999. Commodity scale production of sugars from starches. Curr. Opin. Microbiol. 2: 252-256.
- Dekker K., A. Sugiura H. Yamagata K. Sakaguchi and S. Udaka. 1992. Efficient production of thermostable Thermits thermophilic xylose isomerase in Escherichia coli and Bacillus brevis. Appl. Microbiol. Biotechnol. 36: 727-732.
- Dhawale M.R. and W.M. Ingledew 1983. Starch hydrolysis by derepressed mutants of Schwanniomyces castellii. Biotechnol. Lett. 5: 185-190.
- Fiedurek J., Z. Ilczuk and J. Łobarzewski. 1989. Influence of mycelium growth conditions on the production of amylolytic, proteolytic and pectinolytic enzymes by A. niger C. Acta Biotechnol. 9: 355-361.
- Fiedurek J., A. Paszczyński, G. Ginalska and Z. Ilczuk. 1987. Selection of amylolytically active A. niger mutants resistant to deoxy-D-glucose. Zbl. Mikrobiol. 142: 407-412.
- Fiedurek J. and J. Szczodrak 1995. Imobilization of Apergillus niger mycelium on seeds for glucoamylase production. Sarch/Särke 47: 196-199.
- Ge Y., Y. Wang, H. Zhou, S. Wang, Y. Tong and W. Li. 1999. Co-immobilization of glucoamylase and glucose isomerase by molecular deposition technique for one-step conversion of dextrin to fructose. J. Biotechnol. 67: 33-40.
- Gupta R., P. Gigras., H Mohapatra, V.K. Goswami and B. Chauhan. 2003. Microbiol α-amylases: a biotechnological perspective. Proc. Biochem. 38: 1599-1616.
- Hausser A.G., B.S. Goldberg and J.L. Mertens. 1983. An immobilized two-enzyme system (fungal-amylase/glucoamylase) and its use in the continuous production of high conversion maltose-containing corn syrups. Biotechnol. Bioeng. 25: 525-539.
- Heinkel H. 1956. Comparison of various methods of determining blood diastases. Klin. Wochschr. 34: 155-157.
- Ilczuk Z., J. Fiedurek and A. Paszczyński. 1983. Intensification of amylase synthesis with Aspergillus niger by way of multistage mutagenization. Starch/Starke 35: 397-400.
- Janse B.J.H. and I.S. Prestorius. 1995. One-step enzymatic hydrolysis of starch using a recombinant strain of Saccharomyces cerevisae producing α--amylase, glucoamylase and pullulanase. Appl. Microbiol. Biotechnol. 42: 878-883.
- Jensen B.F. and B. Norman. 1984. Baccillus acidopullulyticus: application and regulatory aspects for use in food industry. Process Biochem. 19: 129-134.
- Kearsley M.W. and S.Z. Dziedzic. 1995. Handbook of Starch Hydrolysis Products and Their Derivatives. Blackie Academic and Professional, London, New York.
- Lloyd J.B. and W.J. Whelan. 1969. Enzymic determination of glucose in the presence of maltose. Anal. Biochem. 30: 467-470.
- Macalister R.V., E.K. Wardip and B.J. Schnyder. 1975. Modified starches, corn syrups containing glucose and maltose, corn syrups containing glucose and fructose, and crystalline dextrose. In: Enzymes in Food Pocessing, ed. Reed, G., 2nd ed., pp. 332-359. Academic Press, New York.
- Miller G.L. 1959. Use of dinitrosalicylic acid reagent for the determination of reducing sugar. Anal. Chem. 31: 426-428.
- Milosavljevic N., R. Prodanovic and Z. Vujcic. 2001. Production and properties of glucoamylase from Aspergillus niger WT. Acta Biol. Jugoslavia 38: 71-78.
- Mishra A. and M. Debnath. 2002. Effect of pH on simultaneous saccharification and isomerization by glucoamylase and glucose oxidase. Appl. Biochem. Biotechnol. 102: 193-200.
- Nilson K.G.I., K. Mosbach and K. Sakaguchi. 1991. Increased yield of fructose from glucose employing thermophilic xylose isomerase in water-ethanol mixtures. Biotechnol. Lett. 13: 787-792.
- Pandey A., P Nigam C.R., Soccol C.R., V.T. Soccol, D. Singh and R. Mohan. 2000. Advances in microbial amylases. Biotechnol. Appl. Biochem. 31: 135-152.
- Paszczyński A., J. Fiedurek Z. Ilczuk and G. Ginalska. 1985. The influence of proteases on the activity of glucoamylase from Aspergillus niger C. Appl. Microbiol. Biotechnol. 22: 34-437.
- Pedersen S. 1993. Inaustrial aspects of immobilized glucose isomerase. Bioprocess Technol. 16: 185-208.
- Percheron F. 1962. Dosage colorimetrique du fructose des fructofuranosides par Facide thiobarbieturique. C. Rr: Acad. Sci. 255: 2521-2522.
- Prabhakar G. and D.C. Raju. 1993. Media optimization studies for glucose isomerase production by Arthrobacter species. Bioprocess Biosystems Eng. 8: 283-286.
- Schacterle G.R. and R.L. Pollack. 1973. A simplified method for the quantitative assay of small amounts of protein in biologic material. Anal. Biochem. 51: 654-655.
- Uusitupa M.I.J. 1994. Fructose in the diabetic diet. A. J. Clin. Nut. 59 (Suppl.): 753S-757S.
- Vuilleumier S. 1993. Worldwide production of high-fructose syrup and crystalline fructose. Am. J. Clin. Nutr. 58 (Suppl.): 733S-736S.
- Zhang Y., K. Hidajat and A.K. Ray. 2004. Optimal design and operation of SMB bioreactor: production of high fructose syrup by isomerization of glucose. Biochem. Eng. J. 21: 111-121.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-eff1e78c-f450-4d1f-9f10-ef8dcc4d3cb6